airway remodelling
Recently Published Documents


TOTAL DOCUMENTS

245
(FIVE YEARS 40)

H-INDEX

40
(FIVE YEARS 3)

2022 ◽  
pp. 2004361
Author(s):  
Jopeth Ramis ◽  
Robert Middlewick ◽  
Francesco Pappalardo ◽  
Jennifer T. Cairns ◽  
Iain D. Stewart ◽  
...  

Airway smooth muscle cells (ASM) are fundamental to asthma pathogenesis, influencing bronchoconstriction, airway hyper-responsiveness, and airway remodelling. Extracellular matrix (ECM) can influence tissue remodelling pathways, however, to date no study has investigated the effect of ASM ECM stiffness and crosslinking on the development of asthmatic airway remodelling. We hypothesised that TGFβ activation by ASM is influenced by ECM in asthma and sought to investigate the mechanisms involved. This study combines in vitro and in vivo approaches: human ASM cells were used in vitro to investigate basal TGFβ activation and expression of ECM crosslinking enzymes. Human bronchial biopsies from asthmatic and non-asthmatic donors were used to confirm LOXL2 expression ASM. A chronic ovalbumin model of asthma was used to study the effect of LOXL2 inhibition on airway remodelling. We found that ASM cells from asthmatics activated more TGFβ basally than non-asthmatic controls and that diseased cell-derived ECM influences levels of TGFβ activated. Our data demonstrate that the ECM crosslinking enzyme LOXL2 is increased in asthmatic ASM cells and in bronchial biopsies. Crucially, we show that LOXL2 inhibition reduces ECM stiffness and TGFβ activation in vitro, and can reduce subepithelial collagen deposition and ASM thickness, two features of airway remodelling, in an ovalbumin mouse model of asthma. These data are the first to highlight a role for LOXL2 in the development of asthmatic airway remodelling and suggest that LOXL2 inhibition warrants further investigation as a potential therapy to reduce remodelling of the airways in severe asthma.


Author(s):  
Joanna Wieczfinska ◽  
Przemysław Sitarek ◽  
Tomasz Kowalczyk ◽  
Piotr Rieske ◽  
Rafal Pawliczak

Author(s):  
Surajit Dey ◽  
Wenying Lu ◽  
James Markos ◽  
Josie Larby ◽  
Collin Chia ◽  
...  
Keyword(s):  

Author(s):  
Zhe Lu ◽  
Hannelore P Van Eeckhoutte ◽  
Gang Liu ◽  
Prema M Nair ◽  
Bernadette Jones ◽  
...  
Keyword(s):  

2021 ◽  
Vol 38 (6) ◽  
pp. 573-574
Author(s):  
L. Rose ◽  
D. Hassoun ◽  
F. Dilasser ◽  
C. Taille ◽  
M.-C. Dombret ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Ke-Jia Cheng ◽  
Min-Li Zhou ◽  
Yong-Cai Liu ◽  
Chen Wang ◽  
Ying-Ying Xu

Background. Allergic rhinitis (AR) affects millions of people and is lack of effective treatment. CD40 is an important costimulatory molecule in immunity. However, few studies have focused on the role of CD40 in AR. Methods. In this study, we built mouse model of chronic AR. The mice were divided into the AR, control, intravenous CD40 siRNA, and nasal CD40 siRNA groups ( n = 6 each). We detected OVA-sIgE, IL-4, IL-5, IL-13, IL-10, IFN-γ, and TGF-β levels in serum and supernatant by ELISA, CD40+ splenic DCs, and Foxp3+ Tregs by flow cytometry and CD40 mRNA by RT2-PCR. We also used PAS and MT stains to assess tissue remodelling. Results. (1) The OVA-sIgE, IL-4, IL-5, and IL-13 levels in the serum or supernatant of nasal septal membrane of AR mice were significantly higher than control. After treated with CD40 siRNA, those indicators were significantly decreased. The IFN-γ, IL-10, and TGF-β levels in AR mice were significantly lower than that in control and were increased by administration of CD40 siRNA. (2) AR mice had significantly fewer Foxp3+ Tregs in the spleen than control mice. After treated with CD40 siRNA, AR mice had significantly more Foxp3+ Tregs. (3) AR mice exhibited a significantly higher CD40 mRNA levels than control. Administration of CD40 siRNA significantly reduced the CD40 mRNA level. (4) The AR mice showed significantly greater collagen deposition than the control in MT staining. Applications of CD40 siRNA significantly reduced the collagen deposition in AR mice. Conclusion. CD40 siRNA therapy shows promise for chronic AR as it significantly attenuated allergic symptoms and Th2-related inflammation and upregulated Foxp3+ Tregs. CD40 plays a role in tissue remodelling in AR, which can be inhibited by CD40 siRNA application.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Kunming Pan ◽  
Juanjuan Lu ◽  
Yun Song

Abstract Background Airway remodelling is the major pathological feature of chronic obstructive pulmonary disease (COPD), and leads to poorly reversible airway obstruction. Current pharmacological interventions are ineffective in controlling airway remodelling. In the present study, we investigated the potential role of artesunate in preventing and treating airway remodelling and the underlying molecular mechanisms in vitro and in vivo. Methods A COPD rat model was established by cigarette smoke (CS) exposure. After 12 weeks of artesunate treatment, pathological changes in the lung tissues of COPD rats were examined by ELISA and histochemical and immunohistochemical staining. A lung functional experiment was also carried out to elucidate the effects of artesunate. Human bronchial smooth muscle (HBSM) cells were used to clarify the underlying molecular mechanisms. Results Artesunate treatment inhibited CS-induced airway inflammation and oxidative stress in a dose-dependent manner and significantly reduced airway remodelling by inhibiting α-smooth muscle actin (α-SMA) and cyclin D1 expression. PPAR-γ was upregulated and TGF-β1/Smad2/3 signalling was inactivated by artesunate treatment in vivo and in vitro. Furthermore, PPAR-γ knockdown by siRNA transfection abolished artesunate-mediated inhibition of HBSM cell proliferation by activiting the TGF-β1/Smad2/3 signalling pathway and downregulating the expression of α-SMA and cyclin D1 in HBSM cells. Conclusions These findings suggest that artesunate could be used to treat airway remodelling by regulating PPAR-γ/TGF-β1/Smad signalling in the context of COPD.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jeanne-Marie Perotin ◽  
Myriam Polette ◽  
Gaëtan Deslée ◽  
Valérian Dormoy

AbstractThe pathophysiology of chronic obstructive pulmonary disease (COPD) relies on airway remodelling and inflammation. Alterations of mucociliary clearance are a major hallmark of COPD caused by structural and functional cilia abnormalities. Using transcriptomic databases of whole lung tissues and isolated small airway epithelial cells (SAEC), we comparatively analysed cilia-associated and ciliopathy-associated gene signatures from a set of 495 genes in 7 datasets including 538 non-COPD and 508 COPD patients. This bio-informatics approach unveils yet undescribed cilia and ciliopathy genes associated with COPD including NEK6 and PROM2 that may contribute to the pathology, and suggests a COPD endotype exhibiting ciliopathy features (CiliOPD).


Sign in / Sign up

Export Citation Format

Share Document