ScienceGate
propyl gallate

Search In:  

All Text Fields
Authors
DOI
Years
Sources
Keywords
Publishers
Document Types

344 results for propyl gallate in 2 miliseconds

Abstract Bacterial resistance to antibiotics is an increasing threat to global healthcare systems. We therefore sought compounds with potential to reverse antibiotic resistance in a clinically relevant multi-drug resistant isolate of Escherichia coli (NCTC 13400). 200 natural compounds with a history of either safe oral use in man, or as a component of a traditional herb or medicine, were screened. Four compounds; ellagic acid, propyl gallate, cinchonidine and cepharanthine, lowered the minimum inhibitory concentrations (MICs) of tetracycline, chloramphenicol and tobramycin by up to fourfold, and when combined up to eightfold. These compounds had no impact on the MICs of ampicillin, erythromycin or trimethoprim. Mechanistic studies revealed that while cepharanthine potently suppressed efflux of the marker Nile red from bacterial cells, the other hit compounds slowed cellular accumulation of this marker, and/or slowed bacterial growth in the absence of antibiotic. Although cepharanthine showed some toxicity in a cultured HEK-293 mammalian cell-line model, the other hit compounds exhibited no toxicity at concentrations where they are active against E. coli NCTC 13400. The results suggest that phytochemicals with capacity to reverse antibiotic resistance may be more common in traditional medicines than previously appreciated, and may offer useful scaffolds for the development of antibiotic-sensitising drugs. Graphic Abstract

2020 ◽
Vol 168
pp. 111272
Author(s):
Yixiong Lin
Hetong Lin
Zhongqi Fan
Hui Wang
Mengshi Lin
Yihui Chen
Yen-Con Hung
Yifen Lin

In plants, lipoxygenases (LOXs) are involved in various processes, such as growth, development, and response to stress cues. In the present study, the expression pattern of six durum wheat LOX-encoding genes (TdLpx-B1.1, TdLpx-B1.2, TdLpx-A2, TdLpx-B2, TdLpx-A3 and TdLpx-B3) under hyperosmotic stress was investigated. With osmotic (0.42 M mannitol) and salt (0.21 M NaCl) stress imposed at the early stages of seedling growth, a strong induction of the TdLpx-A2 gene expression in the shoots paralleled an equally strong increase in the LOX activity. Enhanced levels of malondialdehyde (MDA) and increased rates of superoxide anion generation were also observed as a result of the stress imposition. Sequence analysis of the TdLOX2 encoded by the TdLpx-A2 gene revealed that it belonged to the type-1 9-LOX group. When overexpressed in E. coli, TdLOX2 exhibited normal enzyme activity, high sensitivity to specific LOX inhibitors, with 76% and 99% inhibition by salicylhydroxamic and propyl gallate, respectively, and a preference for linoleic acid as substrate, which was converted exclusively to its corresponding 13-hydroperoxide. This unexpected positional specificity could be related to the unusual TV/K motif that in TdLOX2 replaces the canonical TV/R motif of 9-LOXs. Treatment of seedlings with propyl gallate strongly suppressed the increase in LOX activity induced by the hyperosmotic stress; the MDA accumulation was also reduced but less markedly, whereas the rate of superoxide anion generation was even more increased. Overall, our findings suggest that the up-regulation of the TdLpx-A2 gene is a component of the durum wheat response to hyperosmotic stress and that TdLOX2 may act by counteracting the excessive generation of harmful reactive oxygen species responsible for the oxidative damages that occur in plants under stress.

2020 ◽
Vol 68(31)
pp. 8151-8162
Author(s):
Dong Liu
Yuemin Pan
Kunyuan Li
Dandan Li
Ping Li
Zhimou Gao
Items per page:
11 – 20 of 344