Thiol groups on cysteines can undergo multiple post-translational modifications (PTMs), acting as a molecular switch to maintain redox homeostasis and regulating a series of cell signaling transductions. Identification of sophistical protein cysteine modifications is crucial for dissecting its underlying regulatory mechanism. Instead of a time-consuming and labor-intensive experimental method, various computational methods have attracted intense research interest due to their convenience and low cost. Here, we developed the first comprehensive deep learning based tool pCysMod for multiple protein cysteine modification prediction, including S-nitrosylation, S-palmitoylation, S-sulfenylation, S-sulfhydration, and S-sulfinylation. Experimentally verified cysteine sites curated from literature and sites collected by other databases and predicting tools were integrated as benchmark dataset. Several protein sequence features were extracted and united into a deep learning model, and the hyperparameters were optimized by particle swarm optimization algorithms. Cross-validations indicated our model showed excellent robustness and outperformed existing tools, which was able to achieve an average AUC of 0.793, 0.807, 0.796, 0.793, and 0.876 for S-nitrosylation, S-palmitoylation, S-sulfenylation, S-sulfhydration, and S-sulfinylation, demonstrating pCysMod was stable and suitable for protein cysteine modification prediction. Besides, we constructed a comprehensive protein cysteine modification prediction web server based on this model to benefit the researches finding the potential modification sites of their interested proteins, which could be accessed at http://pcysmod.omicsbio.info. This work will undoubtedly greatly promote the study of protein cysteine modification and contribute to clarifying the biological regulation mechanisms of cysteine modification within and among the cells.
Utilizing the interactions between tryptophan, methyl viologen and cucurbit[8]uril, we found that the distance between the targeted peptides/protein and the reactive peptide was shortened, which facilitated the Michael addition reaction...
AbstractSalicylic acid (SA) and its structural analogs are nonsteroidal anti-inflammatory drugs (NSAIDs) that target mammalian cyclooxygenases. In plants, SA acts as a defense hormone that regulates NON-EXPRESSOR OF PATHOGENESIS RELATED GENES 1 (NPR1), the master transcriptional regulator of immunity-related genes. We identified a number of NSAIDs that enhance bacterial effector-induced cell death. Among them, the oxicam-type NSAIDs tenoxicam (TNX), meloxicam, and piroxicam, but not other types of NSAIDs, exhibit an inhibitory effect on immunity to bacteria and SA-dependent immune responses in plants. TNX treatment reduces NPR1 levels, independently from the proposed SA receptors NPR3 and NPR4. Instead, TNX induces oxidation of cytosolic redox status, which is also affected by SA and regulates NPR1 homeostasis. Surprisingly, however, cysteine modification associated with NPR1 oligomerization via intermolecular disulfide bonds is not affected by either SA or TNX. Therefore, oxicam-type NSAIDs highlight importance of SA effects on the cytosolic redox status, but not on cysteine modification or oligomerization of NPR1.
Protein conjugates are valuable tools to create therapeutics, such as antibody-drug conjugates, or to study biological processes. Despite a number of protein conjugation strategies having been developed over recent years, the ability to modify one specific amino acid on a protein in the presence of other side chains with similar reactivity remains a challenge. We used the reaction between a monosubstituted cyclopropenone (CPO) probe and the 1,2-aminothiol of an N-terminal cysteine to give a stable 1,4-thiazepa-5-none linkage under mild, biocompatible conditions. The method relies on the ability of cyclopropenones to ring-open after sequential sulfhydryl and α-amine conjugation to be truly specific for N-terminal cysteine. We show that our CPO probes selectively label N-terminal cysteine containing peptides and proteins even in the presence of internal, solvent-exposed cysteines, which can be subsequently modified by using conventional cysteine modification reagents. The ability to distinguish and specifically target N-terminal cysteine residues on a protein will facilitate the construction of elaborate multi-labelled bioconjugates.
Protein conjugates are valuable tools to create therapeutics, such as antibody-drug conjugates, or to study biological processes. Despite a number of protein conjugation strategies having been developed over recent years, the ability to modify one specific amino acid on a protein in the presence of other side chains with similar reactivity remains a challenge. We used the reaction between a monosubstituted cyclopropenone (CPO) probe and the 1,2-aminothiol of an N-terminal cysteine to give a stable 1,4-thiazepa-5-none linkage under mild, biocompatible conditions. The method relies on the ability of cyclopropenones to ring-open after sequential sulfhydryl and α-amine conjugation to be truly specific for N-terminal cysteine. We show that our CPO probes selectively label N-terminal cysteine containing peptides and proteins even in the presence of internal, solvent-exposed cysteines, which can be subsequently modified by using conventional cysteine modification reagents. The ability to distinguish and specifically target N-terminal cysteine residues on a protein will facilitate the construction of elaborate multi-labelled bioconjugates.
Sirtuins (e.g. human Sirt1–7) catalyze the removal of acyl groups from lysine residues in proteins in an NAD+-dependent manner, and loss of sirtuin deacylase activity correlates with the development of aging-related diseases. Although multiple reports suggest that sirtuin activity is regulated by oxidative post-translational modifications of cysteines during inflammation and aging, no systematic comparative study of potential direct sirtuin cysteine oxidative modifications has been performed. Here, using IC50 and kinact/KI analyses, we quantified the ability of nitrosothiols (S-nitrosoglutathione and S-nitroso-N-acetyl-d,l-penicillamine), nitric oxide, oxidized GSH, and hydrogen peroxide to post-translationally modify and inhibit the deacylase activity of Sirt1, Sirt2, Sirt3, Sirt5, and Sirt6. The inhibition was correlated with cysteine modification and assessed with chemical-probe and blot-based assays for cysteine S-nitrosation, sulfenylation, and glutathionylation. We show that the primarily nuclear sirtuins Sirt1 and Sirt6, as well as the primarily cytosolic sirtuin Sirt2, are modified and inhibited by cysteine S-nitrosation in response to exposure to both free nitric oxide and nitrosothiols (kinact/KI ≥ 5 m−1 s−1), which is the first report of Sirt2 and Sirt6 inhibition by S-nitrosation. Surprisingly, the mitochondrial sirtuins Sirt3 and Sirt5 were resistant to inhibition by cysteine oxidants. Collectively, these results suggest that nitric oxide–derived oxidants may causatively link nuclear and cytosolic sirtuin inhibition to aging-related inflammatory disease development.