In the paper, a model of a three-phase frequency-controlled induction electric drive has been developed in Simulink Matlab 2019 (MathWorks, Natick, MA, USA). This model is mathematically converted into a two-phase model by transforming equations. It is proposed to compensate the voltage drop in the power system during start-up operation under load by using supercapacitors as a buffer power source. A block of supercapacitors was calculated. Simulation modeling was performed at a different voltage than the network. The diagrams of the transient processes occurring in the electric drive when the power supply is changed were prepared. It was found that such a principle of implementing an additional source of electric energy allows to start induction electric drives in areas remote from industrial networks without significantly affecting their static and dynamic characteristics.
Industrial networks are introducing Internet of Things (IoT) technologies in their manufacturing processes in order to enhance existing methods and obtain smarter, greener and more effective processes. Global predictions forecast a massive widespread of IoT technology in industrial sectors in the near future. However, these innovations face several challenges, such as achieving short response times in case of time-critical applications. Concepts like in-network computing or edge computing can provide adequate communication quality for these industrial environments, and data plane programming has been proved as a useful mechanism for their implementation. Specifically, P4 language is used for the definition of the behavior of programmable switches and network elements. This paper presents a solution for industrial IoT (IIoT) network communications to reduce response times using in-network computing through data plane programming and P4. Our solution processes Message Queuing Telemetry Transport (MQTT) packets sent by a sensor in the data plane and generates an alarm in case of exceeding a threshold in the measured value. The implementation has been tested in an experimental facility, using a Netronome SmartNIC as a P4 programmable network device. Response times are reduced by 74% while processing, and delay introduced by the P4 network processing is insignificant.
Purpose This paper aims to explore the role and meaning of openness for the purpose of enhancing the understanding of collaborative innovation from an industrial network perspective. Design/methodology/approach The theoretical framework is based on the Industrial Network Approach, and the concepts of activity links, resource ties and actor bonds are used as a starting point for capturing the content and dynamics of the interaction. The empirical part consists of five case studies: two historical and three contemporary cases dealing with collaborative innovation projects. The cases are analyzed with regard to openness in business relationships and their connections in the network. Findings The main contribution is a conceptualization of openness in business relationships and relationship connections. The paper describes various forms and contents of openness – and closeness. It is postulated that the concept of openness can be used as an analytical tool for digging deeper into relationship and network-related issues of relevance to firms’ behavior in the context of collaborative innovation. Openness, as it is defined in this paper, is also put forward as an explanation of why (or why not) collaborative innovation projects become successful. Originality/value The conceptualization of openness differs from openness as it is commonly described in the open innovation literature. There, openness is the opposite of closeness, that is, a pattern where the innovation activities take place internally within the company. In this paper, openness, instead, has to do with how firms interact with other network actors in the context of collaborative innovation.
There are many initiatives and technologies working towards implementing factories of the future. One consensus is that the classical hierarchical automation system design needs to be flattened while supporting the functionality of both Operation Technology (OT) and Information Technology (IT) within the same network infrastructure. To achieve the goal of IT/OT convergence in process automation, an evolutionary transition is preferred. Challenges are foreseen during the transition, mainly caused by the traditional automation architecture, and the main challenge is to identify the gap between the current and future network architectures. To address the challenges, in this paper, we describe one desired future scenario for process automation and carry out traffic measurements from a pulp and paper mill. The measured traffic is further analyzed, which reveals representative traffic characteristics in the process automation. Finally, the key challenges and future directions towards a system architecture for factories of the future are presented.
The network infrastructures in the future industrial networks need to accommodate, manage and guarantee performance to meet the converged Internet technology (IT) and operational technology (OT) traffics requirements. The pace of IT–OT networks development has been slow despite their considered benefits in optimizing the performance and enhancing information flows. The hindering factors vary from general challenges in performance management of the diverse traffic for green-field configuration to lack of outlines for evolving from brown-fields to the converged network. Focusing on the brown-field, this study provides additional insight into a brown-field characteristic to set a baseline that enables the subsequent step development towards the future’s expected converged networks. The case study highlights differences between real-world network behavior and the common assumptions for analyzing the network traffic covered in the literature. Considering the unsatisfactory performance of the existing methods for characterization of brown-field traffic, a performance and dynamics mixture measurement is proposed. The proposed method takes both IT and OT traffic into consideration and reduces the complexity, and consequently improves the flexibility, of performance and configuration management of the brown-field.