scholarly journals Contributions Made by Undergraduates to Research Projects: Using the CREDIT Taxonomy to Assess Undergraduate Research Experiences

2020 ◽  
Vol 4 (1) ◽  
pp. 41-51
Author(s):  
Matt Honoré ◽  
◽  
Thomas E. Keller ◽  
Jen Lindwall ◽  
Rachel Crist ◽  
...  

The authors developed the CREDIT URE to define and measure roles performed by undergraduates working in research placements. Derived from an open-source taxonomy for determining authorship credit, the CREDIT URE defines 14 possible roles, allowing students and their research mentors to rate the degree to which students participate in each role. The tool was administered longitudinally across three cohorts of undergraduate student-mentor pairs involved in a biomedical research training program.

Author(s):  
Andrea Bresee ◽  
Joyce Kinkead

Abstract This article focuses on the progress of an undergraduate English major on the scholarship continuum outlined by Laurie Grobman (2009). The student engaged in authentic research in a research methods course for English majors, a class that also meets a university requirement of “quantitative intensive,” and she completed two research projects of note. Her journey has implications and significance for faculty in designing undergraduate research experiences.


2016 ◽  
Vol 78 (6) ◽  
pp. 448-455 ◽  
Author(s):  
Arundhati Bakshi ◽  
Lorelei E. Patrick ◽  
E. William Wischusen

There have been many calls to make research experiences available to more undergraduate students. One way to do this is to provide course-based undergraduate research experiences (CUREs), but providing these on a scale large enough to accommodate many students can be a daunting undertaking. Indeed, other researchers have identified time to develop materials and course size as significant barriers to widespread implementation of CUREs. Based on our own experiences implementing CUREs at a large research university, we present a flexible framework that we have adapted to multiple research projects, share class materials and rubrics we have developed, and suggest logistical strategies to lower these implementation barriers.


2016 ◽  
Vol 15 (4) ◽  
pp. ar55 ◽  
Author(s):  
Jennifer R. Kowalski ◽  
Geoffrey C. Hoops ◽  
R. Jeremy Johnson

Classroom undergraduate research experiences (CUREs) provide students access to the measurable benefits of undergraduate research experiences (UREs). Herein, we describe the implementation and assessment of a novel model for cohesive CUREs focused on central research themes involving faculty research collaboration across departments. Specifically, we implemented three collaborative CUREs spanning chemical biology, biochemistry, and neurobiology that incorporated faculty members’ research interests and revolved around the central theme of visualizing biological processes like Mycobacterium tuberculosis enzyme activity and neural signaling using fluorescent molecules. Each CURE laboratory involved multiple experimental phases and culminated in novel, open-ended, and reiterative student-driven research projects. Course assessments showed CURE participation increased students’ experimental design skills, attitudes and confidence about research, perceived understanding of the scientific process, and interest in science, technology, engineering, and mathematics disciplines. More than 75% of CURE students also engaged in independent scientific research projects, and faculty CURE contributors saw substantial increases in research productivity, including increased undergraduate student involvement and academic outputs. Our collaborative CUREs demonstrate the advantages of multicourse CUREs for achieving increased faculty research productivity and traditional CURE-associated student learning and attitude gains. Our collaborative CURE design represents a novel CURE model for ongoing laboratory reform that benefits both faculty and students.


2016 ◽  
Vol 15 (3) ◽  
pp. ar35 ◽  
Author(s):  
Danielle X. Morales ◽  
Sara E. Grineski ◽  
Timothy W. Collins

In 2014, the National Institutes of Health invested $31 million in 10 primary institutions across the United States through the Building Undergraduate Infrastructure Leading to Diversity (BUILD) program; one requirement of BUILD is sending undergraduate trainees from those primary institutions to partner institutions for research experiences. Mechanisms like BUILD are designed to broaden research opportunities for students, especially those from underrepresented backgrounds. However, to our knowledge, no studies have examined faculty willingness to mentor undergraduates from other institutions through structured training programs. Survey data from 536 faculty members at 13 institutions were collected in Fall 2013 and analyzed using multiple statistical techniques. Results show that faculty who valued the opportunity to increase diversity in the academy and those who believed that mentoring undergraduates benefited their own research expressed greater willingness to serve as research mentors to visiting undergraduates, and faculty who perceived that they did not have the ability to accommodate additional students expressed less willingness to do so. Most respondents viewed student and faculty incentives as motivating factors in their willingness to mentor, but their perspectives on different types of incentives varied based on faculty career stage, discipline, and research funding status. Results have important implications for designing multi-institutional undergraduate research training programs.


2019 ◽  
Vol 366 (13) ◽  
Author(s):  
Caitlin Light ◽  
Megan Fegley ◽  
Nancy Stamp

ABSTRACT Science education studies have shown that a sequence of course-based research experiences has many positive effects for undergraduates. To maximize those benefits, we created a training program for the instructors (aka Research Educators). The program guides them in how to move students early in their college years through the process of science such that students then can successfully apply their learning to conduct real research projects. The key to instructors’ training is creating a supportive community of practice in which everyone participates, including by taking leading roles.


Author(s):  
Lisa K. Marriott ◽  
Aaron Raz Link ◽  
Roberto P Anitori ◽  
Ernest A Blackwell ◽  
Andrea Blas ◽  
...  

Research experience provides critical training for new biomedical research scientists. Students from underrepresented populations studying science, technology, engineering, and mathematics (STEM) are increasingly recruited into research pathways to diversify STEM fields. However, support structures outside of research settings designed to help these students navigate biomedical research pathways are not always available; nor are program support components outside the context of laboratory technical skills training and formal mentorship well understood. This study leveraged a multi-institutional research training program, Enhancing Cross-Disciplinary Infrastructure and Training at Oregon (EXITO), to explore how nine institutions designed a new curricular structure (Enrichment) to meet a common goal of enhancing undergraduate research training and student success. EXITO undergraduates participated in a comprehensive, 3-year research training program with the Enrichment component offered across nine sites: three universities and six community colleges, highly diverse in size, demographics, and location. Sites’ approaches to supporting students in the training program were studied over a 30-month period. All sites independently created their own nonformal curricular structures, implemented interprofessionally via facilitated peer groups. Site data describing design and implementation were thematically coded to identify essential programmatic components across sites, with student feedback used to triangulate findings. Enrichment offered students time to critically reflect on their interests, experiences, and identities in research; network with peers and professionals; and support negotiation of hidden and implicit curricula. Students reported the low-pressure setting and student-centered curriculum balanced the high demands associated with academics and research. Core curricular themes described Enrichment as fostering a sense of community among students, exposing students to career paths and skills, and supporting development of students’ professional identities. The non-formal, interprofessional curricula enabled students to model diverse biomedical identities and pathways for each other while informing institutional structures to improve diverse undergraduate students’ success in academia and research.


2021 ◽  
pp. 009862832110242
Author(s):  
Scott D. Frankowski

Introduction: Undergraduate research experiences prepare students for graduate training or employment. Statement of problem: At many teaching-intensive universities, there is a greater demand for research experiences than there are independent study opportunities. Students from typically underrepresented backgrounds may also be unaware of a department’s undergraduate research pipeline of independent study, honor’s theses, and internal research funding. Literature review: Course-based research contributes to diversity and inclusivity in access to undergraduate research experiences, especially at teaching-intensive universities. Course-based research is often integrated into methods courses, but not content courses. Teaching implications: I present practical ways to integrate research projects into courses. I stress the importance of testing theory, teaching open-science practices, and providing opportunities for students to present professionally. I also provide examples of implementing group research projects in content courses. Conclusion: Implementing course-based research projects, especially at teaching-intensive universities, can expand access to psychological science by providing valuable research opportunities for many students. Instructors can also benefit by intertwining their teaching, mentoring, and research goals. Future research should focus on experimentally testing learning outcomes.


2019 ◽  
Vol 18 (1) ◽  
pp. ar10 ◽  
Author(s):  
Catherine Kirkpatrick ◽  
Anita Schuchardt ◽  
Daniel Baltz ◽  
Sehoya Cotner

Course-based undergraduate research experiences (CUREs) have the potential to improve undergraduate biology education by involving large numbers of students in research. CUREs can take a variety of forms with different affordances and constraints, complicating the evaluation of design features that might contribute to successful outcomes. In this study, we compared students’ responses to three different research experiences offered within the same course. One of the research experiences involved purely computational work, whereas the other two offerings were bench-based research experiences. We found that students who participated in computer-based research reported at least as much interest in their research projects, a higher sense of achievement, and a higher level of satisfaction with the course compared with students who did bench-based research projects. In open-ended comments, similar proportions of students in each research area expressed some sense of project ownership as contributing positively to their course experiences. Their comments also supported the finding that experiencing a sense of achievement was a predictor of course satisfaction. We conclude that both computer-based and bench-based CUREs can have positive impacts on students’ attitudes. Development of more computer-based CUREs might allow larger numbers of students to benefit from participating in a research experience.


Sign in / Sign up

Export Citation Format

Share Document