Recent Designs on Resin Containers of Photocuring 3D Printer

Author(s):  
Baocheng Xie ◽  
Xuhui Ji

Background: Photocuring 3D printing is a highly efficient additive manufacturing technology for machining complex object geometries. Resin container, a core component of photocuring 3D printer, plays a significant role in solving the problems about resin supply, temperature control, peeling method and membrane pressure during the curing process. Thus, the resin container has been paid more and more attention to optimize the curing process Objective: To offer some new designs of resin container which contribute to solve problems about resin supply, temperature control, peeling method and membrane pressure. Provide the reader with a new idea that the function of resin containers cannot be ignored during 3d printing. Moreover, stimulate the reader's thoughts about how can designs of resin containers be further improved Methods: This paper sketches out the strengths and weaknesses of these designs of resin containers with a more critical eye. And show their similarities and differences in a more concise form. Results: The strengths and weaknesses of these designs of resin containers in photocuring 3D printing are summarized. There is no doubt that a suitable resin container contributes to solve the problems about resin supply, temperature control, peeling method and membrane pressure. It helps to stimulate the reader's thoughts on the selection of resin containers for printing optimization Conclusion: Researchers should pay more attention to the new designs of resin containers which are easy to be ignored but have great significance. Some new resin containers will be invented to solve problems about resin supply, temperature control, peeling method and membrane pressure during the curing process

2021 ◽  
Vol 12 (2) ◽  
pp. 371-380
Author(s):  
Sally Cahyati ◽  
◽  
Haris Risqy Aziz

Rapid Prototyping (RP) is a manufacturing process that produces a 3D model CAD to be a real product rapidly by using additive manufacturing technology. In this case, the product will print layer by layer uses a 3D printer machine. The 3D printer requires slicer software to convert CAD data into data that a 3D printer machine can read. Research is done to analyze the effect of three kinds of slicer software on 3D printing objects on the accuracy and surface roughness of the product. The 3D model CAD is sliced using three different slicer software, namely Ideamaker, Repetier Host, and Cura. The slice model result from each slicer will be printed on a 3D printer machine with the same process parameters to be compared. Then the product's dimensional and surface roughness will be measured to determine the effect of each slicer on product quality. The best quality of the product reflected the most suitable slicer software for the 3D printing machine that used. The best results achieved by Cura slicer because it has resulted in small dimensional deviations (max 0,0308±0,0079) and stabile high surface roughness of the product (max 1,585+059).


Author(s):  
Mamta H. Wankhade ◽  
Satish G. Bahaley

<p>3D printing is a form of additive manufacturing technology where a three dimensional object is created by laying down successive layers of material. It is mechanized method whereby 3D objects are quickly made on a reasonably sized machine connected to a computer containing blueprints for the object. As 3D printing is growing fast and giving a boost to product development, the factories doing 3D printing need to continuously meet the printing requirements and maintain an adequate amount of inventory of the filament. As the manufactures have to buy these filaments from various vendors, the cost of 3D printing increases. To overcome the problem faced by the manufacturers, small workshop owners, the need of 3D filament making machine arises. This project focuses on designing and fabricating a portable fused deposition 3D printer filament making machine with cheap and easily available components to draw 1.75 mm diameter ABS filament.</p>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaoyu Zhao ◽  
Ye Zhao ◽  
Ming-De Li ◽  
Zhong’an Li ◽  
Haiyan Peng ◽  
...  

AbstractPhotopolymerization-based three-dimensional (3D) printing can enable customized manufacturing that is difficult to achieve through other traditional means. Nevertheless, it remains challenging to achieve efficient 3D printing due to the compromise between print speed and resolution. Herein, we report an efficient 3D printing approach based on the photooxidation of ketocoumarin that functions as the photosensitizer during photopolymerization, which can simultaneously deliver high print speed (5.1 cm h−1) and high print resolution (23 μm) on a common 3D printer. Mechanistically, the initiating radical and deethylated ketocoumarin are both generated upon visible light exposure, with the former giving rise to rapid photopolymerization and high print speed while the latter ensuring high print resolution by confining the light penetration. By comparison, the printed feature is hard to identify when the ketocoumarin encounters photoreduction due to the increased lateral photopolymerization. The proposed approach here provides a viable solution towards efficient additive manufacturing by controlling the photoreaction of photosensitizers during photopolymerization.


2021 ◽  
Author(s):  
Alexey Pustovarenko ◽  
Beatriz Seoane ◽  
Edy Abou-Hamad ◽  
Helen E King ◽  
Bert Weckhuysen ◽  
...  

3D printing, also known as additive manufacturing technology, has greatly expanded across multiple sectors of technology replacing classical manufacturing methods by combining processing speed and high precision. The scientific interest...


Author(s):  
Laura Daniela Vallejo Melgarejo ◽  
Jose García ◽  
Ronald G. Reifenberger ◽  
Brittany Newell

This document condenses the results obtained when 3D printing lenses and their potential use as diffraction gratings using Digital Light Processing (DLP), as an additive manufacturing technique. This project investigated the feasibility of using DLP additive manufacturing for producing custom designed lenses and gratings. DLP was identified as the preferred manufacturing technology for gratings fabrication. Diffraction gratings take advantage of the anisotropy, inherent in additive manufacturing processes, to produce a collated pattern of multiple fringes on a substrate with completely smooth surfaces. The gratings are transmissive and were manufactured with slit separations of 10, 25 and 50 μm. More than 50 samples were printed at various build angles and mechanically treated for maximum optical transparency. The variables of the irradiance equation were obtained from photographs taken with an optical microscope. These values were used to estimate theoretical irradiance patterns of a diffraction grating and compared against the experimental 3-D printed grating. The resulting patterns were found to be remarkably similar in amplitude and distance between peaks when compared to theoretical values.


2019 ◽  
Vol 253 ◽  
pp. 03003
Author(s):  
Lei Yang ◽  
Xin Chen ◽  
Lei Zhang ◽  
Lei Li ◽  
Shuangzhu Kang ◽  
...  

High-efficiency formation of personalized stent by additive manufacturing (3D printing) has gained deal of attention and research in interventional and personalized medicine. In this article, the structural characteristics of vascular scaffolds and the application and innovation of additive manufacturing technology in the process of angioplasty are reviewed. In the future, with the continuous maturity of additive manufacturing technology, it is expected to be an important part of interventional precision medicine to manufacture personalized vascular stent.


History of additive manufacturing started in the 1980s in Japan. Stereolithography was invented first in 1983. After that tens of other techniques were invented under the common name 3D printing. When stereolithography was invented rapid prototyping did not exists. Tree years later new technique was invented: selective laser sintering (SLS). First commercial SLS was in 1990. At the end of 20t century, first bio-printer was developed. Using bio materials, first kidney was 3D printed. Ten years later, first 3D Printer in the kit was launched to the market. Today we have large scale printers that printed large 3D objects such are cars. 3D printing will be used for printing everything everywhere. List of pros and cons questions rising every day.


Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4534 ◽  
Author(s):  
Elżbieta Bogdan ◽  
Piotr Michorczyk

This paper describes the process of additive manufacturing and a selection of three-dimensional (3D) printing methods which have applications in chemical synthesis, specifically for the production of monolithic catalysts. A review was conducted on reference literature for 3D printing applications in the field of catalysis. It was proven that 3D printing is a promising production method for catalysts.


Author(s):  
Seyed Allameh

Bioinspired materials have enabled the fabrication of tough lightweight structures for load- and impact-bearing applications of which an example is fiber-reinforced plastics use in aerospace. If applied to the field of construction, biomimicked composites can save lives, otherwise lost to earthquakes and other disasters that cause collapse of buildings. The main culprit is the low resistance of structures exposed to dynamic shear stresses, typical of earthquakes. Recent work on the application of biomimicry to structural composites has clearly shown the advantage of these materials in resisting dynamic shear. Adding natural or synthetic reinforcement fibers may alleviate the need for conventional steel rebars and make it possible to print buildings by conventional 3D printing technology. The main hurdles are to find the right type of composite that is compatible with 3D printing and the right process for deposition of such material. In the past, combination of carbon fiber, glue and concrete has been demonstrated to enhance the toughness of resulting structural composites. Inspired by the microstructure of oyster and mother of pearl, layering of these materials mitigates the localization of deformation by distributing the imposed displacement over a large area. The intricate structure of these layers, and the minute details of the interfaces are important for affecting good dynamic shear resistance. In nacre, a partial slip of sandwiched layers occurs before it stops and deformation is transferred to the adjacent area. This energy-absorption capability underlies the high-toughness behavior of nacre and similar structures. By mimicking nacre, bone and tooth, it is possible to benefit from their good properties, however, it is important to determine the type of material, layering scheme, geometry, and other factors that affect mechanical properties. A recently-developed medium-sized 3D printer was developed to deposit structural materials. These include cement, plaster, polymer and clay. Combinatorial structural composite research (CSCR) comprising the simultaneous fabrication and characterization of multiple specimens with different microstructures allows fair comparison of mechanical properties of various structural composites. Novel application of deposition techniques to the extrusion of plaster, cement and clay paves the way to layer these materials along with glue and fibers in desired schemes. Use of ANOVA tables in the selection of various types of ceramics, polymers and reinforcement materials for the fabrication of different composites will be discussed. In addition to selection of the type of the materials, deposition schemes such as those of solid and hollow structures, different layer thickness applications, and the effect of timing will be elucidated. Microscopy conducted on the fractured surfaces enables the investigation of the mechanisms of fracture and failure for these CSCR composites. The details of experiments conducted, microscopy performed and the results of mechanical tests will be presented.


Sign in / Sign up

Export Citation Format

Share Document