scholarly journals Holistic Design of Energy Pile Bridge Deicing System With Ontology-Based Multiobjective Decision Making

2021 ◽  
Vol 8 ◽  
Author(s):  
Peng Zhang ◽  
Chunyi Cui ◽  
Chaoji Li ◽  
Cheng Zhang ◽  
Hailong Liu

Even though the energy piles have been applied for the bridge deicing system, the traditional design approach is commonly a single-domain and objective-oriented method and is consequently lacking means to comprehensively consider all the relevant factors, such as life-cycle cost, investment payback cycle, carbon emissions, etc. This paper presents a holistic design scheme for the energy pile deicing system of bridge decks. In this paper, a holistic designing tool, namely, OntoBDDS, was developed based on ontology method and SWRL rules. It can automatically provide financial, safety, and heat flux information for designers to evaluate and optimize the design scheme of a deicing system in the early design stage of a bridge. After semantic and syntactical validation of the OntoBDDS system, a case study was also conducted to demonstrate how to leverage knowledge query to provide a series of design alternatives autonomously through considering different design parameters. This case study also verified the practicability and feasibility of the OntoBDDS holistic decision-making system and indicated its potential to be applied for other engineering problems when dealing with multiobjective holistic design making.

2021 ◽  
Author(s):  
Paul M. Sobota

<p><br clear="none"/></p><p>During the optioneering phase, engineers face the challenge of choosing between myriads of possible designs, while, simultaneously, several sorts of constraints have to be considered. We show in a case study of a 380 m long viaduct how parametric modelling can facilitate the design process. The main challenge was to satisfy the constraints imposed by several different stakeholders. In order to identify sustainable, aesthetic, economic as well as structurally efficient options, we assessed several key performance indicators in real time. By automatically estimating steel and concrete volumes, a simple, yet suitable approximation of the embodied carbon (considering 85-95%) can be obtained at a very early design stage. In summary, our parametric approach allowed us to consider a wider range of parameters and to react more flexibly to changing conditions during the project.</p><p><br clear="none"/></p>


Volume 4 ◽  
2004 ◽  
Author(s):  
Hamid A. Hadim ◽  
Tohru Suwa

A new multidisciplinary design and optimization methodology in electronics packaging is presented. A genetic algorithm combined with multi-disciplinary design and multi-physics analysis tools are used to optimize key design parameters. This methodology is developed to improve the electronic package design process by performing multidisciplinary design and optimization at an early design stage. To demonstrate its capability, the methodology is applied to a Ball Grid Array (BGA) package design. Multidisciplinary criteria including thermal, thermal strain, electromagnetic leakage, and cost are optimized simultaneously. A simplified routability analysis criterion is treated as a constraint. The genetic algorithm is used for systematic design optimization while reducing the total computational time. The present methodology can be applied to any electronics product design at any packaging level from the chip level to the system level.


2019 ◽  
Vol 91 (7) ◽  
pp. 1067-1076
Author(s):  
Maxim Tyan ◽  
Jungwon Yoon ◽  
Nhu Van Nguyen ◽  
Jae-Woo Lee ◽  
Sangho Kim

Purpose Major changes of an aircraft configuration are conducted during the early design stage. It is important to include the airworthiness regulations at this stage while there is extensive freedom for designing. The purpose of this paper is to introduce an efficient design framework that integrates airworthiness guidelines and documentation at the early design stage. Design/methodology/approach A new design and optimization process is proposed that logically includes the airworthiness regulations as design parameters and constraints by constructing a certification database. The design framework comprises requirements analysis, preliminary sizing, conceptual design synthesis and loads analysis. A design certification relation table (DCRT) describes the legal regulations in terms of parameters and values suitable for use in design optimization. Findings The developed framework has been validated and demonstrated for the design of a Federal Aviation Regulations (FAR) 23 four-seater small aircraft. The validation results show an acceptable level of accuracy to be applied during the early design stage. The total mass minimization problem has been successfully solved while satisfying all the design requirements and certification constraints specified in the DCRT. Moreover, successful compliance with FAR 23 subpart C is demonstrated. The proposed method is a useful tool for design optimization and compliance verifications during the early stages of aircraft development. Practical implications The new certification database proposed in this research makes it simpler for engineers to access a large amount of legal documentation related to airworthiness regulations and provides a link between the regulation text and actual design parameters and their bounds. Originality/value The proposed design optimization framework integrates the certification database that is built of several types of legal documents such as regulations, advisory circulars and standards. The Engineering Requirements and Guide summarizes all the documents and design requirements into a single document. The DCRT is created as a summary table that indicates the design parameters affected by a given regulation(s), the design stage at which the parameter can be evaluated and its value bounds. The introduction of the certification database into the design optimization framework significantly reduces the engineer’s load related for airworthiness regulations.


2012 ◽  
Vol 591-593 ◽  
pp. 25-29
Author(s):  
Peng Fei Tian ◽  
Shi Yan ◽  
Bi Ru Li

Selecting the favorable conceptual design scheme is the first step to make a new product development (NPD) successfully. To guarantee reliability and rationality of decision-making about multiple design schemes in conceptual design stage under the impact of uncertainties and qualitative information, we have employed KJ method to cluster the evaluation factors into 5 clusters such as emotion, ergonomics, aesthetics, core technology, and impact; and fuzzy mathematics method to deal with uncertainties and qualitative information effectively. The weights of evaluation factors were calculated by analytical hierarchy process (AHP). Fuzzy mathematics method is the comprehensive evaluation method and quantitative analysis which based on the “maximum membership degree evaluation”. All design schemes are ranked and selected according to the multiple evaluation score of parts with their weights. Finally, a case study for decision-making is presented to demonstrate the application of the evaluation method.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Ying Wang ◽  
Xiangyu Wang ◽  
Jun Wang ◽  
Ping Yung ◽  
Guo Jun

Considering facilities management (FM) at the early design stage could potentially reduce the efforts for maintenance during the operational phase of facilities. Few efforts in construction industry have involved facility managers into the design phase. It was suggested that early adoption of facilities management will contribute to reducing the needs for major repairs and alternations that will otherwise occur at the operational phase. There should be an integrated data source providing information support for the building lifecycle. It is envisaged that Building Information Modelling (BIM) would fill the gap by acting as a visual model and a database throughout the building lifecycle. This paper develops a framework of how FM can be considered in design stage through BIM. Based on the framework, the paper explores how BIM will beneficially support FM in the design phase, such as space planning and energy analysis. A case study of using BIM to design facility managers’ travelling path in the maintenance process is presented. The results show that early adoption of FM in design stage with BIM can significantly reduce life cycle costs.


2013 ◽  
Vol 32 ◽  
pp. 112-124 ◽  
Author(s):  
Weilin Shen ◽  
Xiaoling Zhang ◽  
Geoffrey Qiping Shen ◽  
Terrence Fernando

Author(s):  
W Dunsmore ◽  
G Pitts ◽  
S M Lewis ◽  
C J Sexton ◽  
C P Please ◽  
...  

This paper considers robust product design applied to mechanical systems via computer-based models at the detail design stage. This involves the efficient use of computer-based experiments to understand how product performance, both its mean and variability, depends on the design parameters. The integration of the general concepts and practical tools is described in terms of the design process, with the aim of making the techniques accessible to designers in an industrial context. The approach is motivated from a design for quality standpoint and is directed principally at improving functional reliability, while addressing issues of performance and cost. The approach is illustrated using a case study on the robust design of a cam mechanism.


Sign in / Sign up

Export Citation Format

Share Document