scholarly journals Application of CSK Encryption Algorithm in Video Synergic Command Systems

2022 ◽  
Vol 34 (2) ◽  
pp. 1-18
Author(s):  
Lele Qin ◽  
Guojuan Zhang ◽  
Li You

Video command and dispatch systems have become essential communication safeguard measures in circumstances of emergency rescue, epidemic prevention, and control command as, data security has become especially important. After meeting the requirements of voice and video dispatch, this paper proposes an end-to-end encryption method of multimedia information that introduces a multiple protection mechanism including selective encryption and selective integrity protection. The method has a network access authentication and service encryption workflow, which implants startup authentication and key distribution into the information control signaling procedure. This method constitutes a key pool with the three-dimensional Lorenz System, the four-dimensional Cellular Neural Network (CNN) System and the four-dimensional Chen System where the key source system and initial conditions are decided by the plaintext video frame itself. Then, this method optimizes the chaotic sequences to further enhance system security.

1995 ◽  
Vol 05 (01) ◽  
pp. 313-320 ◽  
Author(s):  
LADISLAV PIVKA ◽  
ALEXANDER L. ZHELEZNYAK ◽  
CHAI WAH WU ◽  
LEON O. CHUA

This paper reports on the simulation, in three-dimensional cellular-neural-network (CNN) arrays of Chua’s circuits, of basic three-dimensional scroll wave patterns observed previously from other media. Among the simulated patterns are the straight scroll wave, twisted scroll wave in both homogeneous and inhomogeneous media, as well as the scroll ring. These types of waves have been obtained for only one set of circuit parameters by varying the initial conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Parsa Omidi ◽  
Mohamadreza Najiminaini ◽  
Mamadou Diop ◽  
Jeffrey J. L. Carson

AbstractSpatial resolution in three-dimensional fringe projection profilometry is determined in large part by the number and spacing of fringes projected onto an object. Due to the intensity-based nature of fringe projection profilometry, fringe patterns must be generated in succession, which is time-consuming. As a result, the surface features of highly dynamic objects are difficult to measure. Here, we introduce multispectral fringe projection profilometry, a novel method that utilizes multispectral illumination to project a multispectral fringe pattern onto an object combined with a multispectral camera to detect the deformation of the fringe patterns due to the object. The multispectral camera enables the detection of 8 unique monochrome fringe patterns representing 4 distinct directions in a single snapshot. Furthermore, for each direction, the camera detects two π-phase shifted fringe patterns. Each pair of fringe patterns can be differenced to generate a differential fringe pattern that corrects for illumination offsets and mitigates the effects of glare from highly reflective surfaces. The new multispectral method solves many practical problems related to conventional fringe projection profilometry and doubles the effective spatial resolution. The method is suitable for high-quality fast 3D profilometry at video frame rates.


2013 ◽  
Vol 57 (03) ◽  
pp. 125-140
Author(s):  
Daniel A. Liut ◽  
Kenneth M. Weems ◽  
Tin-Guen Yen

A quasi-three-dimensional hydrodynamic model is presented to simulate shallow water phenomena. The method is based on a finite-volume approach designed to solve shallow water equations in the time domain. The nonlinearities of the governing equations are considered. The methodology can be used to compute green water effects on a variety of platforms with six-degrees-of-freedom motions. Different boundary and initial conditions can be applied for multiple types of moving platforms, like a ship's deck, tanks, etc. Comparisons with experimental data are discussed. The shallow water model has been integrated with the Large Amplitude Motions Program to compute the effects of green water flow over decks within a time-domain simulation of ship motions in waves. Results associated to this implementation are presented.


2002 ◽  
Vol 124 (3) ◽  
pp. 481-488 ◽  
Author(s):  
M. Burger ◽  
G. Klose ◽  
G. Rottenkolber ◽  
R. Schmehl ◽  
D. Giebert ◽  
...  

Polydisperse sprays in complex three-dimensional flow systems are important in many technical applications. Numerical descriptions of sprays are used to achieve a fast and accurate prediction of complex two-phase flows. The Eulerian and Lagrangian methods are two essentially different approaches for the modeling of disperse two-phase flows. Both methods have been implemented into the same computational fluid dynamics package which is based on a three-dimensional body-fitted finite volume method. Considering sprays represented by a small number of droplet starting conditions, the Eulerian method is clearly superior in terms of computational efficiency. However, with respect to complex polydisperse sprays, the Lagrangian technique gives a higher accuracy. In addition, Lagrangian modeling of secondary effects such as spray-wall interaction enhances the physical description of the two-phase flow. Therefore, in the present approach the Eulerian and the Lagrangian methods have been combined in a hybrid method. The Eulerian method is used to determine a preliminary solution of the two-phase flow field. Subsequently, the Lagrangian method is employed to improve the accuracy of the first solution using detailed sets of initial conditions. Consequently, this combined approach improves the overall convergence behavior of the simulation. In the final section, the advantages of each method are discussed when predicting an evaporating spray in an intake manifold of an internal combustion engine.


Volume 3 ◽  
2004 ◽  
Author(s):  
Erik D. Svensson

In this work we computationally characterize fluid mixing in a number of passive microfluidic mixers. Generally, in order to systematically study and characterize mixing in realistic fluid systems we (1) compute the fluid flow in the systems by solving the stationary three-dimensional Navier-Stokes equations or Stokes equations with a finite element method, and (2) compute various measures indicating the degree of mixing based on concepts from dynamical systems theory, i.e., the sensitive dependence on initial conditions and mixing variance.


Author(s):  
Hui Yang ◽  
Li Jia ◽  
Lixin Yang

In this paper, piston wind effect on smoke diffusion characteristic in subway tunnel is studied by using three-dimensional transient computational fluid dynamics (CFD) method. In the first simulation case, fire disaster is simulated with homogeneous resting initial field condition. In the second simulation case, the train’s decelerating process till stopping in the tunnel is simulated for getting three-dimensional tunnel air velocity field distribution. Then the final heterogeneous air velocity field when the train stops in the tunnel is taken as initial field condition and the same fire scenario as the first case is simulated again. The data obtained under both initial conditions are compared by detecting people evacuation safety and the influence of initial air velocity field is analyzed. The results show that the inertial air velocity field caused by train’s movement has significant influence on smoke diffusion at the first few minutes of fire disaster, which is the key time for people’s evacuation. The adopted method in this paper and the simulation result could be used in establishing more effective subway fire evacuation plan.


Author(s):  
Marco Cioffi ◽  
Enrico Puppo ◽  
Andrea Silingardi

In typical heavy duty gas turbines the multistage axial compressor is provided with anti-surge pipelines equipped with on-off valves (blow-off lines), to avoid dangerous flow instabilities during start-ups and shut-downs. Blow-off lines show some very peculiar phenomena and somewhat challenging fluid dynamics, which require a deeper regard. In this paper the blow-off lines in axial gas turbines are analyzed by adopting an adiabatic quasi-unidimensional model of the gas flow through a pipe with a constant cross-sectional area and involving geometrical singularities (Fanno flow). The determination of the Fanno limit, on the basis of the flow equation and the second principle of thermodynamics, shows the existence of a critical pipe length which is a function of the pipe parameters and the initial conditions: for a length greater than this maximum one, the model requires a mass-flow reduction. In addition, in the presence of a regulating valve, so-called multi-choked flow can arise. The semi-analytical model has been implemented and the results have been compared with a three-dimensional CFD analysis and cross-checked with available field data, showing a good agreement. The Fanno model has been applied for the analysis of some of the actual machines in the Ansaldo Energia fleet under different working conditions. The Fanno tool will be part of the design procedure of new machines. In addition it will define related experimental activities.


2016 ◽  
pp. 92-97
Author(s):  
R. E. Volkov ◽  
A. G. Obukhov

The rectangular parallelepiped explicit difference schemes for the numerical solution of the complete built system of Navier-Stokes equations. These solutions describe the three-dimensional flow of a compressible viscous heat-conducting gas in a rising swirling flows, provided the forces of gravity and Coriolis. This assumes constancy of the coefficient of viscosity and thermal conductivity. The initial conditions are the features that are the exact analytical solution of the complete Navier-Stokes equations. Propose specific boundary conditions under which the upward flow of gas is modeled by blowing through the square hole in the upper surface of the computational domain. A variant of parallelization algorithm for calculating gas dynamic and energy characteristics. The results of calculations of gasdynamic parameters dependency on the speed of the vertical blowing by the time the flow of a steady state flow.


2018 ◽  
Vol 2018 ◽  
pp. 1-16
Author(s):  
Yi Meng ◽  
Chen QingKui ◽  
Zhang Gang

In the scenario of mass control commands requesting for network access, confined by the best-effort network service mode, it is easy to bring about resource competition and thus a phenomenon of access failure on major and urgent service request at the data access center for the Internet of Things. In this event, the dynamic diversification of control command is unable to access the necessary resources on a comparatively fair basis, causing low efficiency in heterogeneous resource utilization at the access center. This paper defines the problem of group request dynamic resource allocation and further converts it into the problem of 0-1 integer and linear programming and proposes a multistage dynamic packet access strategy. This strategy works first on dynamic group division on the users’ mass control requests using the high ability of self-organizing feature maps and then searches for the optimized matching resources based on the frog-leaping algorithm which has a better capacity for global searching for the best resources. This paper analyzes the feasibility of this strategy and its astringency. The experimental results demonstrate that the strategy can effectively improve the success rate of access to the data center for the Internet of Things and reduce network blockage and response delay.


2021 ◽  
Vol 263 (5) ◽  
pp. 1041-1052
Author(s):  
Martin Richter ◽  
Gregor Tanner ◽  
Bruno Carpentieri ◽  
David J. Chappell

Dynamical energy analysis (DEA) is a computational method to address high-frequency vibro-acoustics in terms of ray densities. It has been used to describe wave equations governing structure-borne sound in two-dimensional shell elements as well as three-dimensional electrodynamics. To describe either of those problems, the wave equation is reformulated as a propagation of boundary densities. These densities are expressed by finite dimensional approximations. All use-cases have in common that they describe the resulting linear problem using a very large matrix which is block-sparse, often real-valued, but non-symmetric. In order to efficiently use DEA, it is therefore important to also address the performance of solving the corresponding linear system. We will cover three aspects in order to reduce the computational time: The use of preconditioners, properly chosen initial conditions, and choice of iterative solvers. Especially the aspect of potentially reusing preconditioners for different input parameters is investigated.


Sign in / Sign up

Export Citation Format

Share Document