energy analysis
Recently Published Documents


TOTAL DOCUMENTS

3807
(FIVE YEARS 755)

H-INDEX

85
(FIVE YEARS 12)

2022 ◽  
Vol 49 ◽  
pp. 101714
Author(s):  
Om Prakash ◽  
Anil Kumar ◽  
Samsher ◽  
Kumaresh Dey ◽  
Ankesh Aman

2022 ◽  
Vol 49 ◽  
pp. 101772
Author(s):  
Omer A. Alawi ◽  
Haslinda Mohamed Kamar ◽  
Ali H. Abdelrazek ◽  
A.R. Mallah ◽  
Hussein A. Mohammed ◽  
...  

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 276
Author(s):  
Yuri Ardesi ◽  
Giuliana Beretta ◽  
Marco Vacca ◽  
Gianluca Piccinini ◽  
Mariagrazia Graziano

The molecular Field-Coupled Nanocomputing (FCN) is a promising implementation of the Quantum-dot Cellular Automata (QCA) paradigm for future low-power digital electronics. However, most of the literature assumes all the QCA devices as possible molecular FCN devices, ignoring the molecular physics. Indeed, the electrostatic molecular characteristics play a relevant role in the interaction and consequently influence the functioning of the circuits. In this work, by considering three reference molecular species, namely neutral, oxidized, and zwitterionic, we analyze the fundamental devices, aiming to clarify how molecule physics impacts architectural behavior. We thus examine through energy analysis the fundamental cell-to-cell interactions involved in the layouts. Additionally, we simulate a set of circuits using two available simulators: SCERPA and QCADesigner. In fact, ignoring the molecular characteristics and assuming the molecules copying the QCA behavior lead to controversial molecular circuit proposals. This work demonstrates the importance of considering the molecular type during the design process, thus declaring the simulators working scope and facilitating the assessment of molecular FCN as a possible candidate for future digital electronics.


2022 ◽  
Vol 2022 ◽  
pp. 1-21
Author(s):  
Jiamin Xu ◽  
Fuqin Kang ◽  
Wei Wang ◽  
Shujun Liu ◽  
Jianhui Xie ◽  
...  

Background. Clinical research found that TCM is therapeutic in treating gastric cancer. Clearing heat is the most common method, while some antirheumatic medicines are widely used in treatment as well. To explore the pharmacological mechanism, we researched the comparison between heat-clearing medicine and antirheumatic medicine in treating gastric cancer. Methods. First, related ingredients and targets were searched, respectively, and are shown in an active ingredient-target network. Combining the relevant targets of gastric cancer, we constructed a PPI network and MCODE network. Then, GO and KEGG enrichment analyses were conducted. Molecular docking experiments were performed to verify the affinity of targets and ligands. Finally, we analyzed the tumor immune infiltration on gene expression, somatic CNA, and clinical outcome. Results. A total of 31 ingredients and 90 targets of heat-clearing medicine, 31 ingredients and 186 targets of antirheumatic medicine, and 12,155 targets of gastric cancer were collected. Antirheumatic medicine ranked the top in all the enrichment analyses. In the KEGG pathway, both types of medicines were related to pathways in cancer. In the KEGG map, AR, MMP2, ERBB2, and TP53 were the most crucial targets. Key targets and ligands were docked with low binding energy. Analysis of tumor immune infiltration showed that the expressions of AR and ERBB2 were correlated with the abundance of immune infiltration and made a difference in clinical outcomes. Conclusions. Quercetin is an important ingredient in both heat-clearing medicine and antirheumatic medicine. AR signaling pathway exists in both types of medicines. The mechanism of the antitumor effect in antirheumatic medicine was similar to trastuzumab, a targeted drug aimed at ERBB2. Both types of medicines were significant in tumor immune infiltration. The immunology of gastric tumor deserves further research.


Author(s):  
Hüseyin Yıldırım

Gupta and Density Functional Theory (DFT) calculations were performed to investigate of structural and magnetic behaviors of 19 atom FenRh[Formula: see text] ([Formula: see text]–19) nanoalloys. A double icosahedron structure was considered for FenRh[Formula: see text] ([Formula: see text]–19) nanoalloys. Significantly, the effects of Fe atom addition on the chemical ordering, stability and total magnetic moments of the nanoalloys were investigated. Local optimization results at the Gupta level show that the Fe atoms are located in the center of the double icosahedron structure and finally in the equatorial region on the surface. The mixing energy analysis obtained that Fe[Formula: see text]Rh7 and Fe4Rh[Formula: see text] nanoalloys are the most stable compositions at Gupta and DFT levels, respectively. It was found that FenRh[Formula: see text] ([Formula: see text]–19) nanoalloys are energetically suitable for mixing at both Gupta and DFT levels. Also, the bond order parameter result is compatible with the mixing energy analysis result. The total magnetic moments of the FenRh[Formula: see text] ([Formula: see text]–19) nanoalloys increase with the addition of the Fe atom, which is a ferromagnetic metal.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 98
Author(s):  
Xuejiao Chen ◽  
Yuanfei Li ◽  
Dandan Li

In this paper, we consider the Brinkman equations pipe flow, which includes the salinity and the temperature. Assuming that the fluid satisfies nonlinear boundary conditions at the finite end of the cylinder, using the symmetry of differential inequalities and the energy analysis methods, we establish the exponential decay estimates for homogeneous Brinkman equations. That is to prove that the solutions of the equation decay exponentially with the distance from the finite end of the cylinder. To make the estimate of decay explicit, the bound for the total energy is also derived.


2022 ◽  
Author(s):  
Markku Karjalainen ◽  
Hüseyin Emre Ilgın ◽  
Lauri Metsäranta ◽  
Markku Norvasuo

Finnish urban settlements are in the age of restoration, and the suburbs need improvements in Finland. In this sense, wooden facade renovation and additional floor construction are viable and sustainable solutions for this development in the Finnish context. This chapter focuses on these important applications from the Finnish residents’ perspective as ecologically sound engineering solutions through a survey. In doing so, the challenges of facade renovation, as well as the benefits of additional floor construction, were presented. The main purpose of the survey was to get the opinions of the residents, find out which variables are important, make inferences for the planning and improvement of such areas, and determine what will be emphasized in the sustainable suburban development of the future. Therefore, the results were based on this empirical approach—survey—but further research such as energy analysis, wood-based facade renovation, and additional floor solutions will be done as part of other studies. It is believed that this study will contribute to the use of sustainable materials and decarbonization of buildings as well as zero energy building (nZEB) to overcome the challenges posed by climate change by the diffusion of wood in the renovation of buildings.


Sign in / Sign up

Export Citation Format

Share Document