Using knowledge of natural disturbances to support sustainable forest management in the northern Clay Belt

2007 ◽  
Vol 83 (3) ◽  
pp. 326-337 ◽  
Author(s):  
Yves Bergeron ◽  
Pierre Drapeau ◽  
Sylvie Gauthier ◽  
Nicolas Lecomte

Several concepts are at the basis of forest ecosystem management, but a relative consensus exists around the idea of a forest management approach that is based on natural disturbances and forest dynamics. This type of approach aims to reproduce the main attributes of natural landscapes in order to maintain ecosystems within their natural range of variability and avoid creating an environment to which species are not adapted. By comparing attributes associated with natural fire regimes and current forest management, we were able to identify four major differences for the black spruce forest of the Clay Belt. The maintenance of older forests, the spatial extent of cutover areas, the maintenance of residuals within cutovers and disturbance severity on soils are major issues that should be addressed. Silvicultural strategies that mitigate differences between natural and managed forests are briefly discussed. Key words: natural disturbance, landscape patterns, coarse filter, harvest pattern, volume retention, historic variability, even-aged management

2013 ◽  
Vol 43 (7) ◽  
pp. 658-668 ◽  
Author(s):  
Hélène M. Marcoux ◽  
Sarah E. Gergel ◽  
Lori D. Daniels

Maps depicting historic fire regimes provide critical baselines for sustainable forest management and wildfire risk assessments. However, given our poor understanding of mixed-severity fire regimes, we asked if there may be considerable errors in fire-regime classification systems used to create landscape-level maps. We used dendrochronological field data (fire scars and tree establishment dates) from 20 randomly selected sites in southern British Columbia to evaluate two classification systems (Natural Disturbance Type (NDT) and Historical Natural Fire Regime (HNFR)) used by managers to map fire regimes. We found evidence of mixed-severity fires at 55% of sites. Each classification system made considerable and contrasting errors predicting mixed-severity regimes (relative to field data), and the discrepancies varied with elevation. The NDT system underrepresented low-to-moderate-severity fires at lower elevations, whereas the HNFR system overpredicted their occurrence at higher elevations. Errors are attributed to underlying assumptions about disturbances in the two classification systems, as well as limitations of the research methods used to estimate fire frequency in mixed-severity regimes (i.e., methods more relevant to high- versus low-severity regimes). Ecological heterogeneity created by mixed-severity regimes potentially influences decisions related to conservation, silviculture, wildfire, and fuel mitigation. Thus, understanding underlying assumptions and errors in mapping fire regimes is critical.


2012 ◽  
Vol 42 (7) ◽  
pp. 1185-1203 ◽  
Author(s):  
Timo Kuuluvainen ◽  
Russell Grenfell

Natural disturbance emulation (NDE) has been proposed as a general approach to ecologically sustainable forest management. We reviewed the concepts, theories, and strategies related to NDE in boreal forest management. We also reviewed publications that discussed NDE in the boreal forest in general and those that specifically compared NDE-based management with conventional even-aged management. The papers generally focused on northern North America and landscape-scale wildfire as the main disturbance factor, whereas information from Eurasia was exclusively theoretical. Within this limited scope, NDE was generally found to have a positive effect on biodiversity in terms of forest structure and species diversity when compared with conventional even-aged management. Studies on timber supply and social implications of NDE were so few that they preclude generalizations. We conclude that the ecological and economic performance of NDE as a management approach still remains poorly examined. To advance the development of NDE, particular attention should be given to (1) augmenting the knowledge base on natural range of variability of unmanaged forest ecosystems and evaluating the validity of this information in a changing climate, (2) fostering multidisciplinary research with better integration of ecological theory to both integrative and analytical research on NDE, and (3) better integration of socioeconomic concerns, adaptive management schemes, and international collaboration into NDE initiatives.


2011 ◽  
Vol 41 (2) ◽  
pp. 309-320 ◽  
Author(s):  
David W. Savage ◽  
David L. Martell ◽  
B. Mike Wotton

Ecological values are an important aspect of sustainable forest management, but little attention has been paid to maintaining these values when using traditional linear programming (LP) forest management planning models in uncertain planning environments. We embedded an LP planning model that specifies when and how much to harvest in a simulation model of a “managed” flammable forest landscape. The simulation model was used to evaluate two strategies for dealing with fire-related uncertainty when managing mature and old forest areas. The two seral stage areas were constrained in the LP planning model to a minimum of 10% of the total forest area and the strategies were evaluated under four representative fire regimes. We also developed a risk analysis tool that can be used by forest managers that wish to incorporate fire-related uncertainty in their decision-making. We found that use of the LP model would reduce the areas of the mature and old forest to their lower bound and fire would further reduce the seral areas below those levels, particularly when the mean annual burn fraction exceeds 0.45% per annum. Increasing the minimum area required (i.e., the right-hand side of the constraint) would increase the likelihood of satisfying the minimum area requirements.


Forests ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 491 ◽  
Author(s):  
Matthew Russell ◽  
Stephanie Patton ◽  
David Wilson ◽  
Grant Domke ◽  
Katie Frerker

The amount of biomass stored in forest ecosystems is a result of past natural disturbances, forest management activities, and current structure and composition such as age class distributions. Although natural disturbances are projected to increase in their frequency and severity on a global scale in the future, forest management and timber harvesting decisions continue to be made at local scales, e.g., the ownership or stand level. This study simulated potential changes in natural disturbance regimes and their interaction with timber harvest goals across the Superior National Forest (SNF) in northeastern Minnesota, USA. Forest biomass stocks and stock changes were simulated for 120 years under three natural disturbance and four harvest scenarios. A volume control approach was used to estimate biomass availability across the SNF and a smaller project area within the SNF (Jeanette Project Area; JPA). Results indicate that under current harvest rates and assuming disturbances were twice that of normal levels resulted in reductions of 2.62 to 10.38% of forest biomass across the four primary forest types in the SNF and JPA, respectively. Under this scenario, total biomass stocks remained consistent after 50 years at current and 50% disturbance rates, but biomass continued to decrease under a 200%-disturbance scenario through 120 years. In comparison, scenarios that assumed both harvest and disturbance were twice that of normal levels and resulted in reductions ranging from 14.18 to 29.85% of forest biomass. These results suggest that both natural disturbances and timber harvesting should be considered to understand their impacts to future forest structure and composition. The implications from simulations like these can provide managers with strategic approaches to determine the economic and ecological outcomes associated with timber harvesting and disturbances.


2016 ◽  
Vol 24 (3) ◽  
pp. 233-243 ◽  
Author(s):  
Chris Stockdale ◽  
Mike Flannigan ◽  
Ellen Macdonald

As our view of disturbances such as wildfire has shifted from prevention to recognizing their ecological necessity, so too forest management has evolved from timber-focused even-aged management to more holistic paradigms like ecosystem-based management. Emulation of natural disturbance (END) is a variant of ecosystem management that recognizes the importance of disturbance for maintaining ecological integrity. For END to be a successful model for forest management we need to describe disturbance regimes and implement management actions that emulate them, in turn achieving our objectives for forest structure and function. We review the different components of fire regimes (cause, frequency, extent, timing, and magnitude), we describe low-, mixed-, and high-severity fire regimes, and we discuss key issues related to describing these regimes. When characterizing fire regimes, different methods and spatial and temporal extents result in wide variation of estimates for different fire regime components. Comparing studies is difficult as few measure the same components; some methods are based on the assumption of a high-severity fire regime and are not suited to detecting mixed- or low-severity regimes, which are critical to END management, as this would affect retention in harvested areas. We outline some difficulties with using fire regimes as coarse filters for forest management, including (i) not fully understanding the interactions between fire and other disturbance agents, (ii) assuming that fire is strictly an exogenous disturbance agent that exerts top-down control of forest structure while ignoring numerous endogenous and bottom-up feedbacks on fire effects, and (iii) assuming by only replicating natural disturbance patterns we preserve ecological processes and vital ecosystem components. Even with a good understanding of a fire regime, we would still be challenged with choosing the temporal and spatial scope for the disturbance regime we are trying to emulate. We cannot yet define forest conditions that will arise from variations in disturbance regime; this then limits our ability to implement management actions that will achieve those conditions. We end by highlighting some important knowledge gaps about fire regimes and how the END model could be strengthened to achieve a more sustainable form of forest management.


2006 ◽  
Vol 36 (12) ◽  
pp. 3194-3208 ◽  
Author(s):  
Martin T Moroni

Dead wood (dead standing tree (snag), woody debris (WD), buried wood, and stump) abundance was estimated in Newfoundland balsam fir (Abies balsamea (L.) Mill.) and black spruce (Picea mariana (Mill.) BSP) forests regrown following natural and anthropogenic disturbances. Although harvesting left few snags standing, natural disturbances generated many snags. Most were still standing 2 years after natural disturbance, but almost all had fallen after 33–34 years. Snag abundance then increased in stands aged 86–109 years. Natural disturbances generated little WD 0–2 years following disturbance. Harvesting, however, immediately generated large amounts of WD. Thirty-two to forty-one years following disturbance, most harvesting slash had decomposed, but naturally disturbed sites had large amounts of WD from collapsed snags. Harvested sites contained less WD 32–72 years following disturbance than naturally disturbed sites. Amounts of WD in black spruce regrown following harvesting and fire converged 63–72 years following disturbance, despite significant initial differences in WD quantities, diameter distribution, and decay classes. Abundance of WD increased from sites regrown 32–72 years following disturbance to older sites. Precommercial thinning had a minor impact on dead wood stocks. Stumps contained minor biomass. Buried wood and WD biomass were equivalent at some sites.


Ecology ◽  
2012 ◽  
Author(s):  
John Parminter

Abiotic natural disturbance agents include wildfire, wind, landslides, snow avalanches, volcanoes, flooding, and other weather-related phenomena. Fire is of particular interest because of its antiquity, its natural role in many terrestrial ecosystems, its long-term use by humans to modify vegetation, and its potentially serious threat to life and property. Fire ecology is the art and science of understanding natural and human fire history and fire effects on the environment, species, ecosystems, and landscapes. This knowledge aids the development of fire and ecosystem management plans and activities. Fire history is determined by a number of techniques that use available physical or cultural evidence to examine particular temporal and spatial scales. Fire effects on the environment and organisms are determined by observation and experimentation, but the findings are variable and often contradictory. Fire regimes are used to characterize the role of fire in specific ecosystems and can help guide ecosystem restoration activities. Attitudes toward fire have evolved over time, as good and bad experiences combined with improved scientific understanding to influence our perspectives. Natural disturbances came to be viewed as integral parts of ecosystems rather than external perturbations. We now strive to allow fire to maintain its natural role in wilderness areas and parks and also to emulate natural disturbances, such as fire, when designing forest harvesting operations. This article focuses on how and what we know about fire’s history, its effects on different components of the environment, its role in specific vegetation types, and its relationship with human culture.


2002 ◽  
Vol 78 (5) ◽  
pp. 665-671 ◽  
Author(s):  
P Lefort ◽  
B Harvey ◽  
J Parton ◽  
G KM Smith

A review of the scientific literature relevant to the Claybelt region was undertaken under the initiative of Lake Abitibi Model Forest (LAMF) and in collaboration with the Canadian Forest Service, the Ontario and Quebec Ministries of Natural Resources and the NSERC-UQAT-UQAM (Natural Sciences and Engineering Research Council – Université du Québec en Abitibi-Témiscamingue – Université du Québec à Montréal) Industrial Chair in Sustainable forest Management. The objective was to synthesize this information in order to develop better forestry practices and identify knowledge and research gaps. Forestry-related knowledge was gathered on six broad topics: i) natural disturbances, ii) forest ecosystems, iii) past and present forest practices, iv) biological diversity, v) forest management and vi) examples of current applications of natural disturbance-based forest management. The work allowed us to synthesize a large body of knowledge into one publication that will be a useful reference for foresters in both provinces. Key words: biodiversity, Claybelt, even-aged/uneven-aged forests, fire, silvicultural practices


2006 ◽  
Vol 36 (11) ◽  
pp. 2737-2744 ◽  
Author(s):  
Yves Bergeron ◽  
Dominic Cyr ◽  
C Ronnie Drever ◽  
Mike Flannigan ◽  
Sylvie Gauthier ◽  
...  

The past decade has seen an increasing interest in forest management based on historical or natural disturbance dynamics. The rationale is that management that favours landscape compositions and stand structures similar to those found historically should also maintain biodiversity and essential ecological functions. In fire-dominated landscapes, this approach is feasible only if current and future fire frequencies are sufficiently low compared with the preindustrial fire frequency, so a substitution of fire by forest management can occur without elevating the overall frequency of disturbance. We address this question by comparing current and simulated future fire frequency based on 2 × CO2 and 3 × CO2 scenarios to historical reconstructions of fire frequency in the commercial forests of Quebec. For most regions, current and simulated future fire frequencies are lower than the historical fire frequency, suggesting that forest management could potentially be used to maintain or recreate the age-class distribution of fire-dominated preindustrial landscapes. Current even-aged management, however, tends to reduce forest variability by, for example, truncating the natural age-class distribution and eliminating mature and old-growth forests from the landscape. Therefore, in the context of sustainable forest management, silvicultural techniques that retain a spectrum of forest compositions and structures at different scales are necessary to maintain this variability and thereby allow a substitution of fire by harvesting.


Sign in / Sign up

Export Citation Format

Share Document