chain model
Recently Published Documents


TOTAL DOCUMENTS

3264
(FIVE YEARS 940)

H-INDEX

69
(FIVE YEARS 10)

2022 ◽  
Vol 155 ◽  
pp. 111713
Author(s):  
Xiaoling Zou ◽  
Pengyu Ma ◽  
Liren Zhang ◽  
Jingliang Lv

Pramana ◽  
2022 ◽  
Vol 96 (1) ◽  
Author(s):  
Kottakkaran Sooppy Nisar ◽  
Mustafa Inc ◽  
Adil Jhangeer ◽  
Muhammad Muddassar ◽  
Barka Infal

2022 ◽  
Author(s):  
Ernesto Alva Sevilla ◽  
Annitta George ◽  
Lorenzo Brancaleon ◽  
Marcelo Marucho

Actin filament′s polyelectrolyte and hydrodynamic properties, their interactions with the biological environment, and external force fields play an essential role in their biological activities in eukaryotic cellular processes. In this article, we introduce a unique approach that combines dynamics and electrophoresis light scattering experiments, an extended semiflexible worm-like chain model, and an asymmetric polymer length distribution theory to characterize the polyelectrolyte and hydrodynamic properties of actin filaments in aqueous electrolyte solutions. We used the same sample and experimental conditions and considered several g-actin and polymerization buffers to elucidate the impact of their chemical composition, reducing agents, pH values, and ionic strengths on the filament translational diffusion coefficient, electrophoretic mobility, structure factor, asymmetric length distribution, effective filament diameter, electric charge, zeta potential, and semiflexibility. Compared to those values obtained from molecular structure models, our results revealed a lower value of the effective G-actin charge and a more significant value of the effective filament diameter due to the formation of the double layer of the electrolyte surrounding the filaments. Additionally, compared to the values usually reported from electron micrographs, the lower values of our results for the persistence length and average contour filament length agrees with the significant difference in the association rates at the filament ends that shift to submicro lengths, the maximum of the length distribution.


2022 ◽  
Vol 80 (1) ◽  
Author(s):  
Mustafa Al-Zoughool ◽  
Tamer Oraby ◽  
Harri Vainio ◽  
Janvier Gasana ◽  
Joseph Longenecker ◽  
...  

Abstract Background Kuwait had its first COVID-19 in late February, and until October 6, 2020 it recorded 108,268 cases and 632 deaths. Despite implementing one of the strictest control measures-including a three-week complete lockdown, there was no sign of a declining epidemic curve. The objective of the current analyses is to determine, hypothetically, the optimal timing and duration of a full lockdown in Kuwait that would result in controlling new infections and lead to a substantial reduction in case hospitalizations. Methods The analysis was conducted using a stochastic Continuous-Time Markov Chain (CTMC), eight state model that depicts the disease transmission and spread of SARS-CoV 2. Transmission of infection occurs between individuals through social contacts at home, in schools, at work, and during other communal activities. Results The model shows that a lockdown 10 days before the epidemic peak for 90 days is optimal but a more realistic duration of 45 days can achieve about a 45% reduction in both new infections and case hospitalizations. Conclusions In the view of the forthcoming waves of the COVID19 pandemic anticipated in Kuwait using a correctly-timed and sufficiently long lockdown represents a workable management strategy that encompasses the most stringent form of social distancing with the ability to significantly reduce transmissions and hospitalizations.


2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Yue Wu ◽  
Junxiang Li ◽  
Jiru Zhou ◽  
Shichang Luo ◽  
Liwei Song

Because of its unique decentralization, encryption, reliability, and tamper-proof, the block chain system makes smart contracts break through the shackles of the lack of trusted environment, and its application field keeps expanding. We read the source code and official documents of Bitcoin, Ethereum, and Hyperledger to explore the operation principle and implementation mode of smart contract. By analyzing the evolution process of smart contracts in blockchain and the sequence of its function expansion, according to the multirole business process of supply chain, we design a semipublic smart contract chain model based on Ethereum and Hyperledger in order to provide useful inspiration and help for the future research of smart contracts in blockchain applied in supply chain.


Author(s):  
Javier E. Hasbun ◽  
Lok C Lew Yan Voon ◽  
Morten Willatzen

Abstract An exact analytical model of charge dynamics for a chain of atoms with asymmetric hopping terms is presented. Analytic and numeric results are shown to give rise to similar dynamics in both the absence and presence of electron interactions. The chain model is further extended to the case of two atoms per cell (a perfect alloy system). This extension is further applied to contact electrification between two different atomic chains and the effect of increasing the magnitude of the contact transfer matrix element is studied.


Author(s):  
Antal Dér ◽  
Alexander Kaluza ◽  
Lars Reimer ◽  
Christoph Herrmann ◽  
Sebastian Thiede

AbstractRecent years introduced process and material innovations in the design and manufacturing of lightweight body parts for larger scale manufacturing. However, lightweight materials and new manufacturing technologies often carry a higher environmental burden in earlier life cycle stages. The prospective life cycle evaluation of lightweight body parts remains to this day a challenging task. Yet, a functioning evaluation approach in early design stages is the prerequisite for integrating assessment results in engineering processes and thus allowing for a life cycle oriented decision making. The current paper aims to contribute to the goal of a prospective life cycle evaluation of fiber-reinforced lightweight body parts by improving models that enable to predict energy and material flows in the manufacturing stage. To this end, a modeling and simulation approach has been developed that integrates bottom-up process models into a process chain model. The approach is exemplarily applied on a case study of a door concept. In particular, the energy intensity of compression molding of glass fiber and carbon fiber sheet molding compounds has been analyzed and compared over the life cycle with a steel reference part.


Sign in / Sign up

Export Citation Format

Share Document