vaccine adjuvant
Recently Published Documents


TOTAL DOCUMENTS

479
(FIVE YEARS 104)

H-INDEX

50
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Hsin-Hung Lin ◽  
Chih-Yen Wang ◽  
Feng-Jen Hsieh ◽  
Fang-Zhen Liao ◽  
Yu-Kai Su ◽  
...  

Abstract Background Composed of mineral oil and mycobacteria pathogens, complete Freund’s adjuvant (CFA) is one of the most commonly used adjuvants for antibody production and scientific research due to its high efficiency. However, the dead mycobacteria in CFA can cause many allergic reactions. We propose here a new formulation based on the use of nanodiamonds (NDs) as biocompatible non-allergic additives in incomplete Freund’s adjuvant (IFA) to avoid these adverse effects. Methods Chicken egg ovalbumin (OVA) was used as the antigens and 100-nm NDs after purification by air oxidation and strong oxidative acid washes were used as the additives. Levels of OVA-specific IgG antibody in mouse sera were measured by using enzyme-linked immunosorbent assays (ELISA) after the second and third immunizations of healthy mice with OVA and OVA/ND in IFA or CFA. Abilities of the OVA/ND/IFA vaccination to inhibit the tumor growth of mice inoculated with EL4 cells or OVA-expressing E.G7 cells were examined over 1 month. Results The new formulation worked well as a potent vaccine adjuvant, which could boost the immune responses and reduce the consumption of antigens in producing antibodies of interest in model animals like mice. Additionally, the composites showed distinct therapeutic activities, as proven by the OVA/ND/IFA treatment that effectively inhibited the tumor progression of E.G7-inoculated mice, allowing the animals to survive over 35 days post tumor-cell challenges. About 0.2% of the injected ND particles were found in mouse spleens on day 24 after vaccination of the E.G7-inoculated mice with OVA/ND/IFA. Conclusions The multiple functionality of ND makes it useful as an active and trackable component of a vaccine adjuvant not only to enhance antibody production but also to suppress tumor growth in vivo. The ND-based new formulation can be developed into single-dose vaccines with promising potential for real-world applications.


The Analyst ◽  
2022 ◽  
Author(s):  
Nicole M. Ralbovsky ◽  
Randal J. Soukup ◽  
Justin P. Lomont ◽  
Mackenzie L. Lauro ◽  
Amanda Gulasarian ◽  
...  

Process analytical technology was used to monitor formation of a stable emulsion product, with results providing improved understanding of emulsion-based vaccine adjuvant formation processes.


Author(s):  
Bassel Akache ◽  
Yimei Jia ◽  
Vandana Chandan ◽  
Lise Deschatelets ◽  
Michael J. McCluskie
Keyword(s):  

2021 ◽  
Vol 6 (66) ◽  
Author(s):  
Murillo Silva ◽  
Yu Kato ◽  
Mariane B. Melo ◽  
Ivy Phung ◽  
Brian L. Freeman ◽  
...  

2021 ◽  
Vol 9 (12) ◽  
pp. e003101
Author(s):  
Xuedan He ◽  
Shiqi Zhou ◽  
Melissa Dolan ◽  
Yuhao Shi ◽  
Jianxin Wang ◽  
...  

BackgroundInduction of CD8+ T cells that recognize immunogenic, mutated protein fragments in the context of major histocompatibility class I (MHC-I) is a pressing challenge for cancer vaccine development.MethodsUsing the commonly used murine renal adenocarcinoma RENCA cancer model, MHC-I restricted neoepitopes are predicted following next-generation sequencing. Candidate neoepitopes are screened in mice using a potent cancer vaccine adjuvant system that converts short peptides into immunogenic nanoparticles. An identified functional neoepitope vaccine is then tested in various therapeutic experimental tumor settings.ResultsConversion of 20 short MHC-I restricted neoepitope candidates into immunogenic nanoparticles results in antitumor responses with multivalent vaccination. Only a single neoepitope candidate, Nesprin-2 L4492R (Nes2LR), induced functional responses but still did so when included within 20-plex or 60-plex particles. Immunization with the short Nes2LR neoepitope with the immunogenic particle-inducing vaccine adjuvant prevented tumor growth at doses multiple orders of magnitude less than with other vaccine adjuvants, which were ineffective. Nes2LR vaccination inhibited or eradicated disease in subcutaneous, experimental lung metastasis and orthotopic tumor models, synergizing with immune checkpoint blockade.ConclusionThese findings establish the feasibility of using short, MHC-I-restricted neoepitopes for straightforward immunization with multivalent or validated neoepitopes to induce cytotoxic CD8+ T cells. Furthermore, the Nes2LR neoepitope could be useful for preclinical studies involving renal cell carcinoma immunotherapy.


Author(s):  
Arshpreet Kaur ◽  
Rohini Kanwar ◽  
Deepender Kaushik ◽  
Isaac G. Sakala ◽  
Yoshikazu Honda-Okubo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document