temperature rise
Recently Published Documents


TOTAL DOCUMENTS

3269
(FIVE YEARS 655)

H-INDEX

63
(FIVE YEARS 10)

2022 ◽  
Vol 122 ◽  
pp. 104339
Author(s):  
Shaogang Zhang ◽  
Yanli Shi ◽  
Bin Lin ◽  
Long Shi ◽  
Jiahao Liu ◽  
...  

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 624
Author(s):  
Jinhyuk Kim ◽  
Jungwoo Lee

We recently proposed an analytical design method of Langevin transducers for therapeutic ultrasound treatment by conducting parametric study to estimate the effect of compression force on resonance characteristics. In this study, experimental investigations were further performed under various electrical conditions to observe the acoustic power of the fully equipped transducer and to assess its heat-related bioeffect. Thermal index (TI) tests were carried out to examine temperature rise and thermal damage induced by the acoustic energy in fatty porcine tissue. Acoustic power emission, TI values, temperature characteristics, and depth/size of thermal ablation were measured as a function of transducer’s driving voltage. By exciting the transducer with 300 Vpp sinusoidal continuous waveform, for instance, the average power was 23.1 W and its corresponding TI was 4.1, less than the 6 specified by the Food and Drug Administration (FDA) guideline. The maximum temperature and the depth of the affected site were 74.5 °C and 19 mm, respectively. It is shown that thermal ablation is likely to be more affected by steep heat surge for a short duration rather than by slow temperature rise over time. Hence, the results demonstrate the capability of our ultrasonic transducer intended for therapeutic procedures by safely interrogating soft tissue and yet delivering enough energy to thermally stimulate the tissue in depth.


Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 213
Author(s):  
Lingtao Zhang ◽  
Fan Liu ◽  
Ting Wang ◽  
Shilin Wu ◽  
Yamei Jin ◽  
...  

As an emerging electrotechnology, induced electric field has attracted extensive attention in the development of innovative heat treatment equipment. In this study, a resistance heating unit based on induced electric field was built for inner heating of aqueous electrolyte solutions as well as liquid foods, such as vinegar. NaCl solutions and liquid foods with different conductivity were used to investigate the thermal effect and temperature rise of samples. Saline gel composed of 3% agar powder and 20% NaCl acted as a coil of conductor for inducing high-level output voltage. The utilization of the saline gel coil significantly improved the power conversion efficiency of the heating unit as well as the heating rate. The results revealed that duty cycle and applied frequency had immediate impact on the efficiency of inner heating. Additionally, the rate of temperature rise was proportional to the conductivity of the sample. The temperature of 200 mL NaCl solution (0.6%) increased from 25 °C to 100 °C in 3 min at 40% duty cycle and 60 kHz of applied frequency, and it was a circulating-flow process. The maximum temperature rise of black vinegar was 39.6 °C in 15 s at 60 kHz and 60% duty cycle, while that of white vinegar was 32.2 °C in 30 s under same conditions, whereas it was a continuous-flow process. This novel heating system has realized the inner heating of liquid samples.


Author(s):  
Tian Xia ◽  
Falong Zhu ◽  
Peng Kang ◽  
Buyun Sheng ◽  
Yiming Qiu

For avoiding the damage of the insulation and permanent magnet, the temperature rise of the PMSM (permanent magnet synchronous motor) should be controlled strictly, it is usually one of the main objectives during improving the output power and torque density beyond the state-of-the-art in motor design. In this research, the coolant channel will be placed within the yoke of the stator core to enhance the heat transfer between the stator core and the coolant. Hydrophobic coating is applied to replace the metal tube for increasing the utilization of the cross area of the coolant channel. The impact of the coolant channel on the performance of the permanent magnet motor is analyzed. A general design method of the coolant channel is presented. The result shows that the change of the stator core loss is within about 10% as the coolant channel is moved away from the slot along the radial direction while the back electromotive force of the motor could keep constant through appropriate design. The impacts of the coolant channels on the magnet performance and the heat dissipation performance could be divided completely with the design method. The method can be applied on various PMSM including SPM (surface-mounted permanent magnet motor) and IPMSM (interior permanent magnet synchronous motor). Sufficient coolant flow could be provide to help conduct the temperature rise of the motor.


2022 ◽  
Author(s):  
Z.J. Tan ◽  
Zhao Zhang

Abstract Additive Manufacturing (AM) is widely used to fabricate phononic crystals (PnCs) in recent years. Friction Stir Additive Manufacturing (FSAM) is a new-type solid state fabrication technology which is fusion free with low distortions. FSAM was selected to fabricate the designed PnCs. The manufactured specimen was distorted due to the temperature rise in the manufacturing process and the band gaps (BGs) were changed with the distortions. Results indicate that the band gap of the PnCs moves to be in higher frequency domain due to the residual distortions of the manufactured PnCs. The residual distortion of FSAM PnCs is 2.77 times smaller in comparison with the Tungsten Inert Gas (TIG) welding. So, the differences of the band gap between the designed PnCs and the FSAM specimen are only in the range of 0.15%- 0.55% due to the lower temperature rise in FSAM. The further analysis shows that the change of the BGs is caused by the growth of the inertia moment for the FSAM PnCs. With the increase of the rotating speed in FSAM, the residual distortion of the FSAM PnCs is increased due to the increase of the welding temperature. This can lead to the increase of the inertia moment, which is the key reason for the increase of the BG characteristics of the FSAM PnCs.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 422
Author(s):  
Zhen Dong ◽  
Na Li ◽  
Teye Chu ◽  
Jiangxin Ding ◽  
Junxiong Zhang ◽  
...  

High-quality cotton stalk fibers that are both fine and have a high breakage strength are extracted via limited alkali penetration in the glycerol solvent and simultaneous accelerated temperature rise by means of microwave-assisted heating. Alkali is widely used in the extraction of cotton stalk fibers. However, alkali molecules in the aqueous phase penetrate easily into the fiber bundles, resulting in a simultaneous degumming between the inner and outer layers of the fiber bundles. In previous reports, the fibers treated in the aqueous phase present a coarse fineness (51.0 dtex) under mild conditions or have a poor breakage strength (2.0 cN/dtex) at elevated temperatures. In this study, glycerol is chosen as a solvent to reduce the penetration of alkali. Simultaneously, the microwave-assisted heating form is adopted to increase the temperature to 170 °C within 22 s. The inhibited alkali penetration and accelerated temperature rise limited the delignification to the outer layer, resulting in fibers with both appropriate fineness (23.8 dtex) and high breakage strength (4.4 cN/dtex). Moreover, the fibers also exhibit a clean surface and large contact angle. In this paper, we detail a new strategy to extract high-quality lignocellulosic fibers that will be suitable for potential reinforcing applications.


Author(s):  
Jian Sun ◽  
Jiaxing Yang ◽  
Jinmei Yao ◽  
Junxing Tian ◽  
Zhongxian Xia ◽  
...  

Abstract As a new high-end bearing product, full ceramic ball bearings are favoured in a variety. However, there have been few studies on the lubrication of full ceramic ball bearings. The purpose of this study is to reveal the relationship between the vibration and temperature rise of full ceramic angular contact ball bearings and the lubricant viscosity, and to improve the service life of the bearings. In this study, the effects of lubricant viscosity on the vibration and temperature rise of silicon nitride full ceramic angular contact ball bearings under different axial loads and rotation speeds were tested. Herein, a mathematical model of oil lubrication suitable for full ceramic ball bearings is established and the relationship between the lubricant viscosity, lubricant film thickness, outer ring vibration and temperature rise of the bearing is analyzed. It was found that the vibration and temperature rise first decrease and then increase with the increase of lubricant viscosity. In this range, there is an optimal viscosity value to minimize the vibration and temperature rise of the full ceramic angular contact ball bearing. The contact surface wear of the full ceramic angular contact ball bearing varies greatly under different lubricant viscosities. There is no obvious wear on the contact surface under optimal viscosity, and the service life of the bearing is greatly improved. These results can play an important role in revealing the lubricant mechanism of full ceramic ball bearings and improving their service life under optimal lubrication.


2022 ◽  
Author(s):  
Hai Zhu ◽  
Dhanushika Gunatilake Mapa ◽  
Catherine Lucero ◽  
Kyle A. Riding ◽  
A. Zayed

Sign in / Sign up

Export Citation Format

Share Document