neural circuitry
Recently Published Documents


TOTAL DOCUMENTS

829
(FIVE YEARS 206)

H-INDEX

82
(FIVE YEARS 9)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Yogev Koren ◽  
Rotem Mairon ◽  
Ilay Sofer ◽  
Yisrael Parmet ◽  
Ohad Ben-Shahar ◽  
...  

AbstractDownward gazing is often observed when walking requires guidance. This gaze behavior is thought to promote walking stability through anticipatory stepping control. This study is part of an ongoing effort to investigate whether downward gazing also serves to enhance postural control, which can promote walking stability through a feedback/reactive mechanism. Since gaze behavior alone gives no indication as to what information is gathered and the functions it serves, we aimed to investigate the cognitive demands associated with downward gazing, as they are likely to differ between anticipatory and feedback use of visual input. To do so, we used a novel methodology to compromise walking stability in a manner that could not be resolved through modulation of stepping. Then, using interference methodology and neuroimaging, we tested for (1) interference related to dual tasking, and (2) changes in prefrontal activity. The novel methodology resulted in an increase in the time spent looking at the walking surface. Further, while some dual-task interference was observed, indicating that this gaze behavior is cognitively demanding, several gaze parameters pertaining to downward gazing and prefrontal activity correlated. These correlations revealed that a greater tendency to gaze onto the walking surface was associated with lower PFC activity, as is expected when sensory information is used through highly automatic, and useful, neural circuitry. These results, while not conclusive, do suggest that gazing onto the walking surface can be used for purposes other than anticipatory stepping control, bearing important motor-control and clinical implications.


Author(s):  
Rohit Joshi ◽  
Rashmi Sipani ◽  
Asif Bakshi

Hox genes have been known for specifying the anterior-posterior axis (AP) in bilaterian body plans. Studies in vertebrates have shown their importance in developing region-specific neural circuitry and diversifying motor neuron pools. In Drosophila, they are instrumental for segment-specific neurogenesis and myogenesis early in development. Their robust expression in differentiated neurons implied their role in assembling region-specific neuromuscular networks. In the last decade, studies in Drosophila have unequivocally established that Hox genes go beyond their conventional functions of generating cellular diversity along the AP axis of the developing central nervous system. These roles range from establishing and maintaining the neuromuscular networks to controlling their function by regulating the motor neuron morphology and neurophysiology, thereby directly impacting the behavior. Here we summarize the limited knowledge on the role of Drosophila Hox genes in the assembly of region-specific neuromuscular networks and their effect on associated behavior.


2022 ◽  
Vol 23 (1) ◽  
pp. 559
Author(s):  
Iris Stoltenborg ◽  
Fiona Peris-Sampedro ◽  
Erik Schéle ◽  
Marie V. Le May ◽  
Roger A. H. Adan ◽  
...  

The availability of Cre-based mouse lines for visualizing and targeting populations of hormone-sensitive cells has helped identify the neural circuitry driving hormone effects. However, these mice have limitations and may not even be available. For instance, the development of the first ghrelin receptor (Ghsr)-IRES-Cre model paved the way for using the Cre-lox system to identify and selectively manipulate ghrelin-responsive populations. The insertion of the IRES-Cre cassette, however, interfered with Ghsr expression, resulting in defective GHSR signaling and a pronounced phenotype in the homozygotes. As an alternative strategy to target ghrelin-responsive cells, we hereby utilize TRAP2 (targeted recombination in active populations) mice in which it is possible to gain genetic access to ghrelin-activated populations. In TRAP2 mice crossed with a reporter strain, we visualized ghrelin-activated cells and found, as expected, much activation in the arcuate nucleus (Arc). We then stimulated this population using a chemogenetic approach and found that this was sufficient to induce an orexigenic response of similar magnitude to that induced by peripheral ghrelin injection. The stimulation of this population also impacted food choice. Thus, the TRAPing of hormone-activated neurons (here exemplified by ghrelin-activated pathways) provides a complimentary/alternative technique to visualize, access and control discrete pathways, linking hormone action to circuit function.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1574
Author(s):  
Denise A. Robles ◽  
Andrew J. Boreland ◽  
Zhiping P. Pang ◽  
Jeffrey D. Zahn

Mental disorders have high prevalence, but the efficacy of existing therapeutics is limited, in part, because the pathogenic mechanisms remain enigmatic. Current models of neural circuitry include animal models and post-mortem brain tissue, which have allowed enormous progress in understanding the pathophysiology of mental disorders. However, these models limit the ability to assess the functional alterations in short-range and long-range network connectivity between brain regions that are implicated in many mental disorders, e.g., schizophrenia and autism spectrum disorders. This work addresses these limitations by developing an in vitro model of the human brain that models the in vivo cerebral tract environment. In this study, microfabrication and stem cell differentiation techniques were combined to develop an in vitro cerebral tract model that anchors human induced pluripotent stem cell-derived cerebral organoids (COs) and provides a scaffold to promote the formation of a functional connecting neuronal tract. Two designs of a Cerebral Organoid Connectivity Apparatus (COCA) were fabricated using SU-8 photoresist. The first design contains a series of spikes which anchor the CO to the COCA (spiked design), whereas the second design contains flat supporting structures with open holes in a grid pattern to anchor the organoids (grid design); both designs allow effective media exchange. Morphological and functional analyses reveal the expression of key neuronal markers as well as functional activity and signal propagation along cerebral tracts connecting CO pairs. The reported in vitro models enable the investigation of critical neural circuitry involved in neurodevelopmental processes and has the potential to help devise personalized and targeted therapeutic strategies.


2021 ◽  
Author(s):  
Poutasi W. B. Urale ◽  
Alexander Michael Puckett ◽  
Ashley York ◽  
Derek Arnold ◽  
D. Sam Schwarzkopf

The physiological blind spot is a naturally occurring scotoma corresponding with the optic disc in the retina of each eye. Even during monocular viewing, observers are usually oblivious to the scotoma, in part because the visual system extrapolates information from the surrounding area. Unfortunately, studying this visual field region with neuroimaging has proven difficult, as it occupies only a small part of retinotopic cortex. Here we used functional magnetic resonance imaging and a novel data-driven method for mapping the retinotopic organization in and around the blind spot representation in V1. Our approach allowed for highly accurate reconstructions of the extent of an observer's blind spot, and out-performed conventional model-based analyses. This method opens exciting opportunities to study the plasticity of receptive fields after visual field loss, and our data add to evidence suggesting that the neural circuitry responsible for impressions of perceptual completion across the physiological blind spot most likely involves regions of extrastriate cortex - beyond V1.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Chang-Rui Chen ◽  
Yu-Heng Zhong ◽  
Shan Jiang ◽  
Wei Xu ◽  
Lei Xiao ◽  
...  

Hypersomnolence disorder (HD) is characterized by excessive sleep, which is a common sequela following stroke, infection or tumorigenesis. HD is traditionally thought to be associated with lesions of wake-promoting nuclei. However, lesions of a single wake-promoting nucleus, or even two simultaneously, did not exert serious HD. Therefore, the specific nucleus and neural circuitry for HD remain unknown. Here, we observed that the paraventricular nucleus of the hypothalamus (PVH) exhibited higher c-fos expression during the active period (23:00) than during the inactive period (11:00) in mice. Therefore, we speculated that the PVH, in which most neurons are glutamatergic, may represent one of the key arousal-controlling centers. By using vesicular glutamate transporter 2 (vglut2Cre) mice together with fiber photometry, multichannel electrophysiological recordings, and genetic approaches, we found that PVHvglut2 neurons were most active during wakefulness. Chemogenetic activation of PVHvglut2 neurons induced wakefulness for 9 h, and photostimulation of PVHvglut2→parabrachial complex/ventral lateral septum circuits immediately drove transitions from sleep to wakefulness. Moreover, lesioning or chemogenetic inhibition of PVHvglut2 neurons dramatically decreased wakefulness. These results indicate that the PVH is critical for arousal promotion and maintenance.


Sign in / Sign up

Export Citation Format

Share Document