wireless networking
Recently Published Documents


TOTAL DOCUMENTS

600
(FIVE YEARS 97)

H-INDEX

30
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Zhiwen Zheng ◽  
Nan Yu ◽  
Jingyang Zhang ◽  
Haipeng Dai ◽  
Qingshan Wang ◽  
...  

Abstract This paper proposes using a WiFi-based identification system, Wi-ID, to identify users from their unique hand gestures. Hand gestures from the popular game rock-paper-scissors are utilized for the system’s user authentication commands. The whole feature of three hand gestures is extracted instead of the single gesture feature extracted by the existing methods. Dynamic time warping (DTW) is utilized to analyze the amplitude information in the time domain based on linear discriminant analysis (LDA), while extract amplitude kurtosis (AP-KU) and shape skewness (SP-SK) are utilized to analyze the Wi-Fi signals energy distribution in the frequency domain. Based on the contributions of the extracted features, the random forests algorithm is utilized for weight inputs in the LSTM model. The experiment is conducted on a computer installed with an Intel 5300 wireless networking card to evaluate the effectiveness and robustness of the Wi-ID system. The experiment results showed the accuracy of the proposed Wi-ID system has a personal differentiation accuracy rate over 92%, and with an average accuracy of 96%. Authorized persons who performed incomplete hand gestures are identified with an accuracy of 92% and hostile intruders can be identified with a probability of 90%. Such performance demonstrates that the Wi-ID system achieved the aim of user authentication.


Author(s):  
Omar A. Aldhaibani ◽  
Alessandro Raschellà ◽  
Ghulam Mohi-Ud-Din ◽  
Michael Mackay

AbstractThis paper proposes an algorithm that enhances horizontal handover (HO) in dense wireless local area networks (WLANs), which is implemented in a software-defined wireless networking (SDWN)-based architecture. The algorithm considers the concept of user prioritisation, classifying the WLAN stations (STAs) into two categories representing high and low priorities respectively, and always attempts to guarantee the best quality of experience (QoE) to the high priority users. The architecture that implements the algorithm leverages the flexibility, programmability, and centralised nature of SDWN to efficiently manage the HO process. Moreover, the paper presents a performance evaluation campaign that demonstrates significant achievements against a state-of-the-art solution in terms of the provided QoE, throughput and delay. Finally, we discuss the importance of considering user prioritisation in a HO algorithm for dense WLANs.


Author(s):  
Zhenyi Chen ◽  
Kwang-Cheng Chen ◽  
Chen Dong ◽  
Zixiang Nie

Private or special-purpose wireless networks present a new technological trend for future mobile communications, while one attractive application scenario is the wireless communication in a smart factory. In addition to wireless technologies, this paper pays special attention to treat a smart factory as the integration of collaborative multi-robot systems for production robots and transportation robots. Multiple aspects of collaborative multi-robot systems enabled by wireless networking have been investigated, dynamic multi-robot task assignment for collaborative production robots and subsequent transportation robots, social learning to enhance precision and robustness of collaborative production robots, and more efficient operation of collaborative transportation robots. Consequently, the technical requirements of 6G mobile communication can be logically highlighted.


Author(s):  
Kamal Upreti ◽  
Vinod Kumar ◽  
Dharmendra Pal ◽  
Mohammad Shabbir Alam ◽  
A. K. Sharma

Author(s):  
Amey Sunil Deshmukh ◽  
Pushppavisha Mani Mudhaliar ◽  
Dr. Surabhi Thorat

Wireless networks provide small sensing, machine and wireless networking nodes. Different designs and implementation techniques were built based on the device requirements for wireless network sensors (WSN). Sensor networks are used in various applications, such as environmental monitoring, home automation, military applications, etc. In this study introduce an architectural survey and deployment of nodes in the Wi-Fi Sensor network in this article. The environmental features that can be added to the sensor networks are given. The program relies on the node installed in the WSN and is deterministic or random. But the biggest issue in both cases is the coverage of the region involved. Researcher also describe WSN routing protocols. In this paper, a new technique to deployment problem is proposed based on the artificial bee colony (ABC) algorithm which is enhanced for the deployment of sensor networks to gain better performance by trying to increase the coverage area of the network and energy consumption. The good performance of the proposed EABC algorithm shows that it can be utilized in the deployment of WSN.


Author(s):  
Abhay Chaudhary

<p>The small aspect, as well as low margins of the microstrip chip amplifier (MPA) is being used in a contact system. For the last few times within the last year's research, the majority of work with MPA has been centered towards designing the portable antenna design. Wireless networking systems may be fitted with a new ultrawideband digital monopoly antenna. Throughout this exponentially changing environment, and dual multi-standard antennas play a crucial role in the implementation of cell towers. This paper presents the nature of an ultra-wideband (UWB)-based antenna array for the shape of a substratum, feeding strategies or openings.</p>


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7925
Author(s):  
Kyungho Ryu ◽  
Wooseong Kim

Wireless networking using GHz or THz spectra has encouraged mobile service providers to deploy small cells to improve link quality and cell capacity using mmWave backhaul links. As green networking for less CO2 emission is mandatory to confront global climate change, we need energy efficient network management for such denser small-cell heterogeneous networks (HetNets) that already suffer from observable power consumption. We establish a dual-objective optimization model that minimizes energy consumption by switching off unused small cells while maximizing user throughput, which is a mixed integer linear problem (MILP). Recently, the deep reinforcement learning (DRL) algorithm has been applied to many NP-hard problems of the wireless networking field, such as radio resource allocation, association and power saving, which can induce a near-optimal solution with fast inference time as an online solution. In this paper, we investigate the feasibility of the DRL algorithm for a dual-objective problem, energy efficient routing and throughput maximization, which has not been explored before. We propose a proximal policy (PPO)-based multi-objective algorithm using the actor-critic model that is realized as an optimistic linear support framework in which the PPO algorithm searches for feasible solutions iteratively. Experimental results show that our algorithm can achieve throughput and energy savings comparable to the CPLEX.


Author(s):  
Basavaraj Madagouda ◽  
R. Sumathi

Wireless networks provide small sensing, machine and wireless networking nodes. Different designs and implementation techniques were built based on the device requirements for wireless network sensors (WSN). Sensor networks are used in various applications, such as environmental monitoring, home automation, military applications, etc. In this study introduce an architectural survey and deployment of nodes in the Wi-Fi Sensor network in this article. The environmental features that can be added to the sensor networks are given. The program relies on the node installed in the WSN and is deterministic or random. But the biggest issue in both cases is the coverage of the region involved. Researcher also describe WSN routing protocols. In this paper, a new technique to deployment problem is proposed based on the artificial bee colony (ABC) algorithm which is enhanced for the deployment of sensor networks to gain better performance by trying to increase the coverage area of the network and energy consumption. The good performance of the proposed EABC algorithm shows that it can be utilized in the deployment of WSN.


2021 ◽  
Vol 25 (Special) ◽  
pp. 1-157-1-166
Author(s):  
Nabaa I. Abed ◽  
◽  
Ghanim A.AL Rubaye ◽  

The phenomenal increase in the usage of mobile devices and wireless networking tools in recent years has resulted in the communication industry needing higher data speeds for connections and bandwidth. As a result, multi-carrier modulation has been suggested as a reliable and effective method of transmitting data over difficult communication networks such as selective fading channels. Orthogonal Frequency Division Multiplexing (OFDM) is a highly effective multi-carrier technique that can meet users' high demands. Many studies have looked into this technique, mostly as a way to counteract fading and Additive White Gaussian Noise (AWGN). As a result, the performance evaluation of the QAM-OFDM system in the presence of multi-path Rayleigh fading in Weibull noise is examined in this article. Furthermore, bit error rate performance (BER) is computed using the optimal derivation of the real system contaminated by compound Gaussian and non-Gaussian (Weibull) noise distributions at the OFDM demodulator output. The derived result is an exact match to the simulated result over various scenarios introduced by the MATLAB software package.


Sign in / Sign up

Export Citation Format

Share Document