n2 adsorption
Recently Published Documents


TOTAL DOCUMENTS

344
(FIVE YEARS 115)

H-INDEX

30
(FIVE YEARS 8)

2022 ◽  
Vol 607 ◽  
pp. 1551-1561
Author(s):  
Dachang Chen ◽  
Zhiwen Chen ◽  
Lixin Chen ◽  
Yi Li ◽  
Song Xiao ◽  
...  

2022 ◽  
Vol 16 ◽  
Author(s):  
Mustapha Dib ◽  
Marieme Kacem ◽  
Soumaya Talbi ◽  
Hajiba Ouchetto ◽  
Khadija Ouchetto ◽  
...  

Background: Pyran is an heterocyclic oxygen-containing compound that displays a wide range of therapeutic activities. Additionally, pyran is also one of the important structural subunits widely found in pharmaceuticals products. This makes it a recent focus for researchers from the industry and academic institutions. Herein, we reported an efficient and environmentally friendly one-pot strategy for the synthesis of bioactive 4H-pyran compounds via a multicomponent reaction of ethyl acetoacetate, malononitrile and substituted aromatic aldehydes in the presence of the heterogeneous spinel catalyst ( MgAl2O4 ) under mild conditions (room temperature and green solvents). The MgAl2O4 nanocatalyst was prepared from Mg/Al-LDH with a molar ratio 3 of Mg2+/Al3+ by heat treatment at 800°C. The samples were studied by a various characterization techniques such as XRD, TG-dTG, FT-IR and N2 adsorption-desorption. Good to excellent yields and facile separation of the catalyst from the reaction mixture are two of the most appealing features of this approach. Thus, bioactive molecules with pyran units may have fascinating biological properties. An efficient and green strategy for the one-pot synthesis of bioactive 4H-pyran compounds has been described. The pyrans heterocycles were produced by multicomponent reaction of ethyl acetoacetate, malononirile and substituted aromatic aldehydes in the presence of MgAl2O4 spinel nanocatalyst under mild conditions (room temperature and green solvents). MgAl2O4 nanocatalytst was prepared from Mg/Al-LDH with a molar ratio 3 of Mg2+/Al3+ by thermal treatment at 800°C. The samples were investigated by various characterization techniques such as XRD, TG-dTG, FT-IR and N2 adsorption-desorption. The following are the appealing qualities of this unique strategy including good to exceptional yields, and ease of separation of catalyst from the reaction mixture. Thus, the obtained bioactive compounds containing pyrans motif can be exhibiting interested biological activities. Methods: The substituted 4H-pyran compounds were carried out by condensation reaction of substituted aromatic aldehydes, ethyl ethyl acetoacetate and malononirile by using MgAl2O4 nanocatalyst under sustainable conditions. Objective: To develop an efficient methodology for synthesis of 4H-pyran heterocyclic molecules may have interesting applications in biology using a heterogeneous and easily synthesized catalyst. Results: This procedure outlines the synthesis of bioactive compounds in good yields and with ease of catalyst extraction from the reaction mixture under sustainable reaction conditions. Conclusion: In conclusion, it is important to reiterate that a spinel nanostucture has been successfully prepared and fully characterized using different physicochemical analysis methods. The catalytic activity of this heterogeneous catalyst was examined through the one-pot condensation of aryl benzaldehyde, malononitrile and ethyl acetoacetate. Therefore, we have developed a green method for the preparation of 4H-pyrans derivatives using MgAl2O4 as an efficient heterogeneous catalyst. The reactions were performed under green conditions, which have many benefits such as undergoing a simple procedure, good to excellent yields and easy to separate the catalyst.


Geofluids ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-15
Author(s):  
Peng Zhang ◽  
Junwei Yang ◽  
Yuqi Huang ◽  
Jinchuan Zhang ◽  
Xuan Tang ◽  
...  

Shale heterogeneity directly determines the alteration ability and gas content of shale reservoirs, and its study is a core research topic in shale gas exploitation and development. In this study, the shale from the Longmaxi Formation from well Ld1 located in western Hunan and Hubei is investigated. The shale’s heterogeneity is analyzed based on shale mineral rocks, microslices, geochemistry, and low-temperature N2 adsorption-desorption. It is found that the shales of the Longmaxi Formation from well Ld1 are mainly composed of siliceous shale, mixed shale, and clayey shale. The three types of shale facies exhibit strong heterogeneity in terms of the occurrence state of organic matter, organic content, mineral composition, microstructure and structure, brittleness, and micropore type. Sedimentation, late diagenesis, and terrigenous input are the main factors influencing the shale’s heterogeneity. With a total organic carbon (TOC) of 0.41%-4.18% and an organic matter maturity ( R o ) of 3.09%-3.42%, the shales of the Longmaxi Formation from well Ld1 are in an overmature stage, and their mineral composition is mainly quartz (5%-66%) and clay minerals (17.8%-73.8%). The main pore types are intergranular pores, intragranular pores, microfractures, and organic pores. The results of the low-temperature N2 adsorption-desorption experiment show that the shale pores are mainly composed of micropores and mesopores with narrow throats and complex structures, and their main morphology is of a thin-necked and wide-body ink-bottle pore. Based on the Frenkel-Halsey-Hill (FHH) model, the pore fractal dimension is studied to obtain the fractal dimension D 1 (2.73-2.76, mean 2.74) under low relative pressure ( P / P 0 ≤ 0.5 ) and D 2 (2.80-2.89, mean 2.85) under high relative pressure ( P / P 0 > 0.5 ). The shales of the Longmaxi Formation in the study area have a strong adsorption and gas storage capacity; however, the pore structure is complex and the connectivity is poor, which, in turn, imposes high requirements on reservoir reformation measures during exploitation. Moreover, the fractal dimension has a positive correlation with organic matter abundance, TOC, clay mineral content, and pyrite content and a negative correlation with quartz content. Since the organic matter contained in the shales of the Longmaxi Formation in the study area is in the overmature stage, the adsorption capacity of the shales is reduced, and the controlling effect of organic matter abundance on the same is not apparent.


Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 57
Author(s):  
Daniela González-Varela ◽  
Daniel G. Araiza ◽  
Gabriela Díaz ◽  
Heriberto Pfeiffer

A series of LaNiO3 materials were synthesized by the EDTA–citrate complexing method, modifying different physicochemical conditions. The LaNiO3 samples were calcined between 600 and 800 °C and characterized by XRD, SEM, XPS, CO-TPD, TG, DT, and N2 adsorption. The results evidence that although all the samples presented the same crystal phase, LaNiO3 as expected, some microstructural and superficial features varied as a function of the calcination temperature. Then, LaNiO3 samples were tested as catalysts of the CO oxidation process, a reaction never thoroughly analyzed employing this material. The catalytic results showed that LaNiO3 samples calcined at temperatures of 600 and 700 °C reached complete CO conversions at ~240 °C, while the sample thermally treated at 800 °C only achieved a 100% of CO conversion at temperatures higher than 300 °C. DRIFTS and XRD were used for studying the reaction mechanism and the catalysts’ structural stability, respectively. Finally, the obtained results were compared with different Ni-containing materials used in the same catalytic process, establishing that LaNiO3 has adequate properties for the CO oxidation process.


Fuel ◽  
2022 ◽  
Vol 308 ◽  
pp. 121965
Author(s):  
Mina Sedighi ◽  
Mohammad Reza Talaie ◽  
Hassan Sabzyan ◽  
Seyedfoad Aghamiri ◽  
Pu Chen

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8435
Author(s):  
Jianguo Zhang ◽  
Xiyuan Li ◽  
Jihong Jiao ◽  
Jianbao Liu ◽  
Feng Chen ◽  
...  

In order to investigate the difference of pore structure characteristics between mudstone and coal under different particle size conditions, samples acquired from Henan province were smashed and screened into three different particle sizes (20–40, 80–100, and >200 mesh) to conduct the experiments, using the high-pressure mercury intrusion porosimetry (MIP) and low-temperature N2 adsorption (LT-N2A) techniques. The results demonstrated that the proportion of open pores or semi-enclosed pores increased, and the pores became preferable contacted each other for both mudstone and coal during the crushing process. These variations of pore structure characteristics in the coal were beneficial to methane storage and migration. The total specific surface areas and pore volumes all showed a tendency of increasing continually for both mudstone and coal, as the particle sizes decreased from the LT-N2A test. The mudstone and coal were non-rigid aggregates with micropores, plate-shaped pores, and slit-shaped pores developed inside. The effect of the crushing process on the pore shape for the mudstone and coal was inappreciable. Moreover, the influence of the particle sizes on the mesopore was the most significant, followed by the macropore; and on the micropore, the influence was negligible for both mudstone and coal. The crushing process only had a significant impact on the pore structure of mudstone with a particle size of less than 100 mesh, while it could still alter the pore structure of coal with a particle size of larger than 100 mesh. It is believed that this work has a significant meaning to explore the diffusion and migration rules of coal-bed methane in coal.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7378
Author(s):  
Kalina Grzelak ◽  
Maciej Trejda

The design of different bimetallic catalysts is an important area of catalytic research in the context of their possible applications in the cascade processes, meeting the requirements of the so-called green chemistry. In this study, such catalysts were obtained by the incorporation of magnesium species into spherical silica, which was in the next step covered with porous silica and modified with ruthenium species. The structure and chemical composition of the materials obtained were determined by XRD measurements, low temperature N2 adsorption/desorption, SEM, ICP-OES and XPS methods. The catalytic activities of materials obtained were tested in 2-propanol decomposition and hydrogenation of levulinic acid. The results obtained confirmed the successful coverage of nanospheres with porous silica. A much higher concentration of ruthenium species was found on the surface of the catalysts than in their bulk. The opposite relationship was observed for magnesium species. The modification of nanospheres with silica had a positive effect on the catalytic activity of the materials obtained. For the most active sample, i.e., Ru/NS/3Mg/NS, 49% of levulinic acid conversion in its hydrogenation process was reported with γ-valerolactone as the only product.


Author(s):  
Kouqi Liu ◽  
Zhijun Jin ◽  
Natalia Zakharova ◽  
Lianbo Zeng ◽  
Adedoyin Adeyilola ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document