skin substitutes
Recently Published Documents


TOTAL DOCUMENTS

546
(FIVE YEARS 143)

H-INDEX

52
(FIVE YEARS 7)

Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 118
Author(s):  
Shima Tavakoli ◽  
Marta A. Kisiel ◽  
Thomas Biedermann ◽  
Agnes S. Klar

The immune system has a crucial role in skin wound healing and the application of specific cell-laden immunomodulating biomaterials emerged as a possible treatment option to drive skin tissue regeneration. Cell-laden tissue-engineered skin substitutes have the ability to activate immune pathways, even in the absence of other immune-stimulating signals. In particular, mesenchymal stem cells with their immunomodulatory properties can create a specific immune microenvironment to reduce inflammation, scarring, and support skin regeneration. This review presents an overview of current wound care techniques including skin tissue engineering and biomaterials as a novel and promising approach. We highlight the plasticity and different roles of immune cells, in particular macrophages during various stages of skin wound healing. These aspects are pivotal to promote the regeneration of nonhealing wounds such as ulcers in diabetic patients. We believe that a better understanding of the intrinsic immunomodulatory features of stem cells in implantable skin substitutes will lead to new translational opportunities. This, in turn, will improve skin tissue engineering and regenerative medicine applications.


2022 ◽  
Vol 23 (1) ◽  
pp. 476
Author(s):  
Syafira Masri ◽  
Mazlan Zawani ◽  
Izzat Zulkiflee ◽  
Atiqah Salleh ◽  
Nur Izzah Md Fadilah ◽  
...  

Skin substitutes can provide a temporary or permanent treatment option for chronic wounds. The selection of skin substitutes depends on several factors, including the type of wound and its severity. Full-thickness skin grafts (SGs) require a well-vascularised bed and sometimes will lead to contraction and scarring formation. Besides, donor sites for full-thickness skin grafts are very limited if the wound area is big, and it has been proven to have the lowest survival rate compared to thick- and thin-split thickness. Tissue engineering technology has introduced new advanced strategies since the last decades to fabricate the composite scaffold via the 3D-bioprinting approach as a tissue replacement strategy. Considering the current global donor shortage for autologous split-thickness skin graft (ASSG), skin 3D-bioprinting has emerged as a potential alternative to replace the ASSG treatment. The three-dimensional (3D)-bioprinting technique yields scaffold fabrication with the combination of biomaterials and cells to form bioinks. Thus, the essential key factor for success in 3D-bioprinting is selecting and developing suitable bioinks to maintain the mechanisms of cellular activity. This crucial stage is vital to mimic the native extracellular matrix (ECM) for the sustainability of cell viability before tissue regeneration. This comprehensive review outlined the application of the 3D-bioprinting technique to develop skin tissue regeneration. The cell viability of human skin cells, dermal fibroblasts (DFs), and keratinocytes (KCs) during in vitro testing has been further discussed prior to in vivo application. It is essential to ensure the printed tissue/organ constantly allows cellular activities, including cell proliferation rate and migration capacity. Therefore, 3D-bioprinting plays a vital role in developing a complex skin tissue structure for tissue replacement approach in future precision medicine.


e-Polymers ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 75-86
Author(s):  
Dalia I. Sánchez-Machado ◽  
Jaime López-Cervantes ◽  
Diana M. Martínez-Ibarra ◽  
Ana A. Escárcega-Galaz ◽  
Claudia A. Vega-Cázarez

Abstract Chitosan is an amino-polysaccharide, traditionally obtained by the partial deacetylation of chitin from exoskeletons of crustaceans. Properties such as biocompatibility, hemostasis, and the ability to absorb physiological fluids are attributed to this biopolymer. Chitosan’s biological properties are regulated by its origin, polymerization degree, and molecular weight. In addition, it possesses antibacterial and antifungal activities. It also has been used to prepare films, hydrogels, coatings, nanofibers, and absorbent sponges, all utilized for the healing of skin wounds. In in vivo studies with second-degree burns, healing has been achieved in at least 80% of the cases between the ninth and twelfth day of treatment with chitosan coatings. The crucial steps in the treatment of severe burns are the early excision of damaged tissue and adequate coverage to minimize the risk of infection. So far, partial-thickness autografting is considered the gold standard for the treatment of full-thickness burns. However, the limitations of donor sites have led to the development of skin substitutes. Therefore, the need for an appropriate dermal equivalent that functions as a regeneration template for the growth and deposition of new skin tissue has been recognized. This review describes the properties of chitosan that validate its potential in the treatment of skin burns.


2021 ◽  
Vol 18 (3) ◽  
pp. 56-60
Author(s):  
Ji Won Park ◽  
Soo Wook Chae ◽  
Byung Min Yun

In recent decades, tissue engineering advances have led to more skin substitutes becoming available. Acellular dermal matrix, initially developed for use in the treatment of full-thickness burns, is made by removing the cellular components from the dermis collected from donated bodies or animals. This class of scaffold is used to replace skin and soft tissue deficiencies in a variety of fields, including breast reconstruction, abdominal wall reconstruction, and burn treatment. Herein, we provide a detailed review of the clinical applications of acellular dermal matrix.


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 70
Author(s):  
Li-Ping Liu ◽  
Dong-Xu Zheng ◽  
Zheng-Fang Xu ◽  
Hu-Cheng Zhou ◽  
Yun-Cong Wang ◽  
...  

Amniotic epithelial stem cells (AESCs) are considered as potential alternatives to keratinocytes (KCs) in tissue-engineered skin substitutes used for treating skin damage. However, their clinical application is limited since similarities and distinctions between AESCs and KCs remain unclear. Herein, a transcriptomics analysis and functional evaluation were used to understand the commonalities and differences between AESCs and KCs. RNA-sequencing revealed that AESCs are involved in multiple epidermis-associated biological processes shared by KCs and show more similarity to early stage immature KCs than to adult KCs. However, AESCs were observed to be heterogeneous, and some possessed hybrid mesenchymal and epithelial features distinct from KCs. A functional evaluation revealed that AESCs can phagocytose melanosomes transported by melanocytes in both 2D and 3D co-culture systems similar to KCs, which may help reconstitute pigmented skin. The overexpression of TP63 and activation of NOTCH signaling could promote AESC stemness and improve their differentiation features, respectively, bridging the gap between AESCs and KCs. These changes induced the convergence of AESC cell fate with KCs. In future, modified reprogramming strategies, such as the use of small molecules, may facilitate the further modulation human AESCs for use in skin regeneration.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 89
Author(s):  
Enes Aslan ◽  
Cian Vyas ◽  
Joel Yupanqui Mieles ◽  
Gavin Humphreys ◽  
Carl Diver ◽  
...  

Skin is a hierarchical and multi-cellular organ exposed to the external environment with a key protective and regulatory role. Wounds caused by disease and trauma can lead to a loss of function, which can be debilitating and even cause death. Accelerating the natural skin healing process and minimizing the risk of infection is a clinical challenge. Electrospinning is a key technology in the development of wound dressings and skin substitutes as it enables extracellular matrix-mimicking fibrous structures and delivery of bioactive materials. Honey is a promising biomaterial for use in skin tissue engineering applications and has antimicrobial properties and potential tissue regenerative properties. This preliminary study investigates a solution electrospun composite nanofibrous mesh based on polycaprolactone and a medical grade honey, SurgihoneyRO. The processing conditions were optimized and assessed by scanning electron microscopy to fabricate meshes with uniform fiber diameters and minimal presence of beads. The chemistry of the composite meshes was examined using Fourier transform infrared spectroscopy and X-ray photon spectroscopy showing incorporation of honey into the polymer matrix. Meshes incorporating honey had lower mechanical properties due to lower polymer content but were more hydrophilic, resulting in an increase in swelling and an accelerated degradation profile. The biocompatibility of the meshes was assessed using human dermal fibroblasts and adipose-derived stem cells, which showed comparable or higher cell metabolic activity and viability for SurgihoneyRO-containing meshes compared to polycaprolactone only meshes. The meshes showed no antibacterial properties in a disk diffusion test due to a lack of hydrogen peroxide production and release. The developed polycaprolactone-honey nanofibrous meshes have potential for use in skin applications.


Medicina ◽  
2021 ◽  
Vol 57 (12) ◽  
pp. 1367
Author(s):  
Giuseppe Cottone ◽  
Francesco Amendola ◽  
Carlo Strada ◽  
Maria Chiara Bagnato ◽  
Roberto Brambilla ◽  
...  

Background and objectives: The skin recently became the main focus of regenerative medicine and, in this context, skin substitutes are fully entering into the plastic surgeon’s armamentarium. Among the various types of skin substitutes, dermal substitutes (DSs) are the most used. Our study aims to retrospectively compare three renowned and extremely similar DS in the management of critical lower limb wounds in the largest cohort analysis currently present in literature. Materials and Methods: We followed a strict protocol of application and evaluation of the DS for each patient and wound and, after a meticulous bias reduction process, we compared final outcomes in terms of efficacy and speed in achieving the defect coverage. Results: Among patients who did not receive a skin graft after the DS, we registered a wound healed surface of 50% for Pelnac, 52% for Integra, and 19% for Nevelia, after 30 days from the external silicon layer removal; among those who received a skin graft after the DS, we observed a significantly lower mean percentage of graft take after 7 days with Pelnac (53%) compared to Integra and Nevelia (92% and 80%, respectively). The overall percentage of wound healed surface obtained after 30 days from the external silicon sheet removal, either with or without skin graft, was 71% for Pelnac, 63% for Integra and 63% for Nevelia. We also ran a sub-group analysis only including grafted wounds with a negative microbiological test and the mean percentage of graft take was similar this time. Eventually, we assessed the influence of the wound’s “chronicity” on its healing, comparing the mean graft take only in “acute” wounds who received a skin graft and it resulted 63% for Pelnac, 91% for Integra and 75% for Nevelia. Conclusions: Integra demonstrates the highest rate of skin graft viability and the highest rate of skin graft takes after 7 days. Pelnac shows the quickest induction of secondary healing in acute wounds. Nevelia is not different from Integra and shows a superior graft take compared to Pelnac, but features the lowest secondary healing induction rate. No differences exist between the three DSs in terms of wound healing after 30 days from the skin graft or from the removal of the external silicon layer.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2164
Author(s):  
Jordan Holl ◽  
Cezary Pawlukianiec ◽  
Javier Corton Ruiz ◽  
Dawid Groth ◽  
Kamil Grubczak ◽  
...  

Chronic ulcerative and hard-healing wounds are a growing global concern. Skin substitutes, including acellular dermal matrices (ADMs), have shown beneficial effects in healing processes. Presently, the vast majority of currently available ADMs are processed from xenobiotic or cadaveric skin. Here we propose a novel strategy for ADM preparation from human abdominoplasty-derived skin. Skin was processed using three different methods of decellularization involving the use of ionic detergent (sodium dodecyl sulfate; SDS, in hADM 1), non-ionic detergent (Triton X-100 in hADM 2), and a combination of recombinant trypsin and Triton X-100 (in hADM 3). We next evaluated the immunogenicity and immunomodulatory properties of this novel hADM by using an in vitro model of peripheral blood mononuclear cell culture, flow cytometry, and cytokine assays. We found that similarly sourced but differentially processed hADMs possess distinct immunogenicity. hADM 1 showed no immunogenic effects as evidenced by low T cell proliferation and no significant change in cytokine profile. In contrast, hADMs 2 and 3 showed relatively higher immunogenicity. Moreover, our novel hADMs exerted no effect on T cell composition after three-day of coincubation. However, we observed significant changes in the composition of monocytes, indicating their maturation toward a phenotype possessing anti-inflammatory and pro-angiogenic properties. Taken together, we showed here that abdominoplasty skin is suitable for hADM manufacturing. More importantly, the use of SDS-based protocols for the purposes of dermal matrix decellularization allows for the preparation of non-immunogenic scaffolds with high therapeutic potential. Despite these encouraging results, further studies are needed to evaluate the beneficial effects of our hADM 1 on deep and hard-healing wounds.


Author(s):  
Wentao Shu ◽  
Yinan Wang ◽  
Xi Zhang ◽  
Chaoyang Li ◽  
Hanxiang Le ◽  
...  

The therapy of burns is a challenging clinical issue. Burns are long-term injuries, and numerous patients suffer from chronic pain. Burn treatment includes management, infection control, wound debridement and escharotomy, dressing coverage, skin transplantation, and the use of skin substitutes. The future of advanced care of burn wounds lies in the development of “active dressings”. Hydrogel dressings have been employed universally to accelerate wound healing based on their unique properties to overcome the limitations of existing treatment methods. This review briefly introduces the advantages of hydrogel dressings and discusses the development of new hydrogel dressings for wound healing along with skin regeneration. Further, the treatment strategies for burns, ranging from external to clinical, are reviewed, and the functional classifications of hydrogel dressings along with their clinical value for burns are discussed.


2021 ◽  
Vol 22 (23) ◽  
pp. 13091
Author(s):  
Andréa Tremblay ◽  
Mélissa Simard ◽  
Sophie Morin ◽  
Roxane Pouliot

Healthy skin moLEdels produced by tissue-engineering often present a suboptimal skin barrier function as compared with normal human skin. Moreover, skin substitutes reconstructed according to the self-assembly method were found to be deficient in polyunsaturated fatty acids (PUFAs). Therefore, in this study, we investigated the effects of a supplementation of the culture media with docosahexaenoic acid (DHA) on the barrier function of skin substitutes. To this end, 10 μM DHA-supplemented skin substitutes were produced (n = 3), analyzed, and compared with controls (substitutes without supplementation). A Franz cell diffusion system, followed by ultra-performance liquid chromatography, was used to perform a skin permeability to testosterone assay. We then used gas chromatography to quantify the PUFAs found in the epidermal phospholipid fraction of the skin substitutes, which showed successful DHA incorporation. The permeability to testosterone was decreased following DHA supplementation and the lipid profile was improved. Differences in the expression of the tight junction (TJ) proteins claudin-1, claudin-4, occludin, and TJ protein-1 were observed, principally a significant increase in claudin-1 expression, which was furthermore confirmed by Western blot analyses. In conclusion, these results confirm that the DHA supplementation of cell culture media modulates different aspects of skin barrier function in vitro and reflects the importance of n-3 PUFAs regarding the lipid metabolism in keratinocytes.


Sign in / Sign up

Export Citation Format

Share Document