order effects
Recently Published Documents


TOTAL DOCUMENTS

1895
(FIVE YEARS 305)

H-INDEX

66
(FIVE YEARS 8)

2022 ◽  
pp. 001316442110694
Author(s):  
Chet Robie ◽  
Adam W. Meade ◽  
Stephen D. Risavy ◽  
Sabah Rasheed

The effects of different response option orders on survey responses have been studied extensively. The typical research design involves examining the differences in response characteristics between conditions with the same item stems and response option orders that differ in valence—either incrementally arranged (e.g., strongly disagree to strongly agree) or decrementally arranged (e.g., strongly agree to strongly disagree). The present study added two additional experimental conditions—randomly incremental or decremental and completely randomized. All items were presented in an item-by-item format. We also extended previous studies by including an examination of response option order effects on: careless responding, correlations between focal predictors and criteria, and participant reactions, all the while controlling for false discovery rate and focusing on the size of effects. In a sample of 1,198 university students, we found little to no response option order effects on a recognized personality assessment vis-à-vis measurement equivalence, scale mean differences, item-level distributions, or participant reactions. However, the completely randomized response option order condition differed on several careless responding indices suggesting avenues for future research.


Author(s):  
Weifang Weng ◽  
Guoqiang Zhang ◽  
Zhenya  Yan

The higher-order effects play an important role in the wave propagations of ultrashort (e.g. subpicosecond or femtosecond) light pulses in optical fibres. In this paper, we investigate any n -component fourth-order nonlinear Schrödinger ( n -FONLS) system with non-zero backgrounds containing the n -Hirota equation and the n -Lakshmanan–Porsezian–Daniel equation. Based on the loop group theory, we find the multi-parameter family of novel rational vector rogue waves (RVRWs) of the n -FONLS equation starting from the plane-wave solutions. Moreover, we exhibit the weak and strong interactions of some representative RVRW structures. In particular, we also find that the W-shaped rational vector dark and bright solitons of the n -FONLS equation as the second- and fourth-order dispersion coefficients satisfy some relation. Furthermore, we find the higher-order RVRWs of the n -FONLS equation. These obtained rational solutions will be useful in the study of RVRW phenomena of multi-component nonlinear wave models in nonlinear optics, deep ocean and Bose–Einstein condensates.


2021 ◽  
Vol 119 (1) ◽  
pp. e2020956119
Author(s):  
Anshuman Swain ◽  
Levi Fussell ◽  
William F. Fagan

The assembly and maintenance of microbial diversity in natural communities, despite the abundance of toxin-based antagonistic interactions, presents major challenges for biological understanding. A common framework for investigating such antagonistic interactions involves cyclic dominance games with pairwise interactions. The incorporation of higher-order interactions in such models permits increased levels of microbial diversity, especially in communities in which antibiotic-producing, sensitive, and resistant strains coexist. However, most such models involve a small number of discrete species, assume a notion of pure cyclic dominance, and focus on low mutation rate regimes, none of which well represent the highly interlinked, quickly evolving, and continuous nature of microbial phenotypic space. Here, we present an alternative vision of spatial dynamics for microbial communities based on antagonistic interactions—one in which a large number of species interact in continuous phenotypic space, are capable of rapid mutation, and engage in both direct and higher-order interactions mediated by production of and resistance to antibiotics. Focusing on toxin production, vulnerability, and inhibition among species, we observe highly divergent patterns of diversity and spatial community dynamics. We find that species interaction constraints (rather than mobility) best predict spatiotemporal disturbance regimes, whereas community formation time, mobility, and mutation size best explain patterns of diversity. We also report an intriguing relationship among community formation time, spatial disturbance regimes, and diversity dynamics. This relationship, which suggests that both higher-order interactions and rapid evolution are critical for the origin and maintenance of microbial diversity, has broad-ranging links to the maintenance of diversity in other systems.


2021 ◽  
Author(s):  
Gavin Bidelman ◽  
Jared Carter

Spoken language comprehension requires listeners map continuous features of the speech signal to discrete category labels. Categories are however malleable to surrounding context; listeners’ percept can dynamically shift depending on the sequencing of adjacent stimuli resulting in a warping of the heard phonetic category (i.e., hysteresis). Here, we investigated whether such perceptual nonlinearities—which amplify categorical hearing—might further aid speech processing in noise-degraded listening scenarios. We measured continuous dynamics in perception and category judgments of an acoustic-phonetic vowel gradient via mouse tracking. Tokens were presented in serial vs. random orders to induce more/less perceptual warping while listeners categorized continua in clean and noise conditions. Listeners’ responses were faster and their mouse trajectories closer to the ultimate behavioral selection (marked visually on the screen) in serial vs. random order, suggesting increased perceptual attraction to category exemplars. Interestingly, order effects emerged earlier and persisted later in the trial time course when categorizing speech in noise. These data describe a new functional benefit of perceptual nonlinearities to speech perception yet undocumented: warping strengthens the behavioral attraction to relevant speech categories while simultaneously assisting perception in degraded acoustic environments.


2021 ◽  
Vol 2 (4) ◽  
pp. 1263-1282
Author(s):  
Tiina Nygård ◽  
Michael Tjernström ◽  
Tuomas Naakka

Abstract. Thermodynamic profiles are affected by both the large-scale dynamics and the local processes, such as radiation, cloud formation and turbulence. Based on ERA5 reanalysis, radiosoundings and cloud cover observations from winters 2009–2018, this study demonstrates manifold impacts of large-scale circulation on temperature and specific humidity profiles in the circumpolar Arctic north of 65∘ N. Characteristic wintertime circulation types are allocated using self-organizing maps (SOMs). The study shows that influence of different large-scale flows must be viewed as a progressing set of processes: (1) horizontal advection of heat and moisture, driven by circulation, lead to so-called first-order effects on thermodynamic profiles and turbulent surface fluxes, and (2) the advection is followed by transformation of the air through various physical processes, causing second-order effects. An example of second-order effects is the associated cloud formation, which shifts the strongest radiative cooling from the surface to the cloud top. The temperature and specific humidity profiles are most sensitive to large-scale circulation over the Eurasian land west of 90∘ E and the Arctic Ocean sea ice, whereas impacts over North America and Greenland are more ambiguous. Eurasian land, between 90 and 140∘ E, occasionally receives warm and moist air from the northern North Atlantic, which, with the support of radiative impacts of clouds, weakens the otherwise strong temperature and specific humidity inversions. Altitudes of maximum temperature and specific humidity in a profile and their variability between the circulation types are good indicators of the depth of the layer impacted by surface–atmosphere processes interacting with the large-scale circulation. Different circulation types typically cause variations of a few hundred metres to this altitude, and the layer impacted is deepest over north-eastern Eurasia and North America.


2021 ◽  
Vol 2021 (12) ◽  
pp. 025
Author(s):  
Rebeca Martinez-Carrillo ◽  
Juan Carlos Hidalgo ◽  
Karim A. Malik ◽  
Alkistis Pourtsidou

Abstract We compute the real space galaxy power spectrum, including the leading order effects of General Relativity and primordial non-Gaussianity from the f NL and g NL parameters. Such contributions come from the one-loop matter power spectrum terms dominant at large scales, and from the factors of the non-linear bias parameter b NL (akin to the Newtonian b ϕ). We assess the detectability of these contributions in Stage-IV surveys. In particular, we note that specific values of the bias parameter may erase the primordial and relativistic contributions to the configuration space power spectrum.


Author(s):  
Mathias Klahn ◽  
Per A. Madsen ◽  
David R. Fuhrman

In this paper, we study the mean and variance of the Eulerian and Lagrangian fluid velocities as a function of depth below the surface of directionally spread irregular wave fields given by JONSWAP spectra in deep water. We focus on the behaviour of these quantities in the bulk of the water, and using second-order potential flow theory we derive new simple asymptotic approximations for their decay in the limit of large depth below the surface. Specifically, we show that when the depth is greater than about 1.5 peak wavelengths, the variance of the Eulerian velocity decays in proportion to exp ⁡ ( − ( 135 4 ) 1 / 3 ( − k p z ) 2 / 3 ) , and the mean Lagrangian velocity decays in proportion to 1 ( − k p z ) 1 / 6 exp ⁡ ( − ( 135 4 ) 1 / 3 ( − k p z ) 2 / 3 ) . Here, k p is the peak wave number and z is the vertical coordinate measured positively upwards from the still water level. We test the accuracy of the second-order formulation against new fully nonlinear simulations of both short crested and long crested irregular wave fields and find a good match, even when the simulations are known to be affected substantially by third-order effects. To our knowledge, this marks the first fully nonlinear investigation of the Eulerian and Lagrangian velocities below the surface in irregular wave fields.


Sign in / Sign up

Export Citation Format

Share Document