hyphal length
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 12)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Merle Lisa Hammer ◽  
Maria Joanna Niemiec ◽  
Isabel Auge ◽  
Pim van Leeuwen ◽  
Friederike Gorki ◽  
...  

The human body is colonized by various microbes, among them the yeast Candida albicans. Mostly harmless, this opportunist causes also disease, ranging from superficial infections to sepsis. Risk factors are disturbed host defenses, mucosal barrier breakdown, and antibiotic-induced dysbiosis. Hence, residing bacteria are important to protect from Candida-mediated damage or inflammation. Bacteroides vulgatus mpk, e.g., is described as positively immunomodulatory in mouse models of inflammatory bowel disease, but its effect on the mycobiota is unknown. In this study we aimed to determine if B. vulgatus mpk affects C. albicans pathogenicity. Therefore, intestinal and oral epithelial cellswere pre-infectedin vitrowith B. vulgatus mpk and then challenged with C. albicans SC5314. The role of soluble factors was investigated by spatial separation or use of Bacteroides-conditioned medium (BCM). Preincubation of host cells with B. vulgatus mpk strongly reduced C. albicans-mediated damage while fungal burden and hyphal length were unaffected by the bacterium. The protective effect did not depend on direct contact of Bacteroidesto host cellsor Candida and could be mimicked using BCM. Contact independency suggests that diffusible factors modulate host cell susceptibility. Ongoing experiments aim to identifykey soluble Bacteroides mediators as well as subsequent host cell signaling. Additionally, co-colonization experiments of germ-free mice are planned to investigate B. vulgatus mpk’s potential to mediate colonization resistance towards C. albicans. This will contribute to our understanding of how commensal bacteria affect C. albicans and host protection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Letian Wang ◽  
Xihe Wang ◽  
Baidengsha Maimaitiaili ◽  
Arjun Kafle ◽  
Khuram Shehzad Khan ◽  
...  

Maximizing the function of indigenous arbuscular mycorrhizal (AM) fungi by choosing specific crop genotypes offers one of the few untapped opportunities to improve the sustainability of agriculture. In this study, the differences in mycorrhizal responsiveness (MR) in plant growth and shoot phosphorus (P) content among cotton (Gossypium spp. L.) genotypes from different release dates were compared and then the relationships between MR and P uptake-related traits were determined. The experimental design in a greenhouse included 24 genotypes released from 1950 to present in Xinjiang Province, inoculation with or without AM fungi, and P levels (15 and 150 mg P kg–1 added as KH2PO4). Results showed that the modern cotton genotypes exhibited a higher degree of mycorrhizal colonization, the hyphal length density (HLD), and mycorrhizae-induced changes in shoot growth than the old genotypes when inoculated with indigenous AM fungi at both the P levels. Moreover, MR was highly correlated with the HLD at low P levels and the HLD may provide useful insights for future cotton breeding aimed at delivering crop genotypes that can benefit more from AM fungi.


2021 ◽  
Vol 9 (11) ◽  
pp. 2348
Author(s):  
Neftaha Tazi ◽  
Xavier Pigeon ◽  
Jérôme Mulamba Mbuyi-Boisvert ◽  
Simon Giret ◽  
François Béland ◽  
...  

The most common use of cannabis is smoking. The oral ecosystem, among other constituents, can be deregulated by the presence of cannabis smoke in the oral cavity. We evaluated the effect of cannabis smoke condensate (CSC) on the behavior of Candida albicans, a common yeast found in the oral cavity. The yeast was first cultured with different concentrations of CSC, and its growth was evaluated. The transition from the blastospore to the hyphal form and the hyphae size were assessed after 3 and 6 h, along with biofilm formation after 72 h of contact with CSC. The response of C. albicans to oxidative (H2O2) stress was also examined. Our results show that CSC contained high amounts of THC (about 1055 ppm), CBN (63 ppm), and CBG (about 47 ppm). The presence of various concentrations of CSC in the culture medium increased C. albicans growth. CSC also contributed to increases in both the hyphal length and biofilm mass. Following oxidative stress (H2O2 at either 100 or 500 μM), CSC prevented the damaging effect of H2O2 on both C. albicans shape and growth. These findings support clinical observations demonstrating that cannabis may promote C. albicans growth and oral candidiasis.


Horticulturae ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 228
Author(s):  
Lu-Lu Meng ◽  
Sheng-Min Liang ◽  
Anoop Kumar Srivastava ◽  
Yan Li ◽  
Chun-Yan Liu ◽  
...  

The role of arbuscular mycorrhizal fungi in sweet oranges is well known, but the function of their secondary metabolite, especially the easily extractable glomalin-related soil protein (EE-GRSP), an active fraction of glomalin, is still unclear. The proposed study aimed to analyze the field response of foliar application of exogenous EE-GRSP on tree mycorrhizal development and fruit quality of two sweet orange (Citrus sinensis L. Osbeck) varieties viz., Lane Late Navel (LLN) and Rohde Red Valencia (RRV). Application of EE-GRSP significantly increased the root mycorrhizal colonization and soil mycorrhizal hyphal length in both the sweet orange varieties. The external quality of fruits (fruit weight, polar diameter, and equatorial diameter) also improved in response to foliar application of EE-GRSP in both sweet orange varieties. However, EE-GRSP treatment showed no change in fruit soluble solid content, while it increased the Vc content, solids-acid ratio, fructose, glucose, and sucrose content of sarcocarp in the two sweet oranges varieties. The LLN variety treated with EE-GRSP recorded significantly higher N, P, K, Fe, and Si content of sarcocarp as a mark of nutritional quality, while the RRV variety treated with EE-GRSP displayed a higher concentration of nutrients like Cu, Fe, Si, and Zn in the sarcocarp as compared with the corresponding non-treated control. To the best of our knowledge, this is the first report regarding the improvement in fruit quality of late-ripening sweet oranges (especially LLN) in response to foliar application of EE-GRSP as another potential biostimulant.


2021 ◽  
Vol 22 (4) ◽  
pp. 2080
Author(s):  
Mehari Desta Hawku ◽  
Farhan Goher ◽  
Md Ashraful Islam ◽  
Jia Guo ◽  
Fuxin He ◽  
...  

AP2 transcription factors play a crucial role in plant development and reproductive growth, as well as response to biotic and abiotic stress. However, the role of TaAP2-15, in the interaction between wheat and the stripe fungus, Puccinia striiformis f. sp. tritici (Pst), remains elusive. In this study, we isolated TaAP2-15 and characterized its function during the interaction. TaAP2-15 was localized in the nucleus of wheat and N. benthamiana. Silencing of TaAP2-15 by barley stripe mosaic virus (BSMV)-mediated VIGS (virus-induced gene silencing) increased the susceptibility of wheat to Pst accompanied by enhanced growth of the pathogen (number of haustoria, haustorial mother cells and hyphal length). We confirmed by quantitative real-time PCR that the transcript levels of pathogenesis-related genes (TaPR1 and TaPR2) were down-regulated, while reactive oxygen species (ROS)-scavenging genes (TaCAT3 and TaFSOD3D) were induced accompanied by reduced accumulation of H2O2. Furthermore, we found that TaAP2-15 interacted with a zinc finger protein (TaRZFP34) that is a homolog of OsRZFP34 in rice. Together our findings demonstrate that TaAP2-15 is positively involved in resistance of wheat to the stripe rust fungus and provides new insights into the roles of AP2 in the host-pathogen interaction.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Liyuan Hou ◽  
Xiaofei Zhang ◽  
Gu Feng ◽  
Zheng Li ◽  
Yubin Zhang ◽  
...  

AbstractArbuscular mycorrhizal (AM) symbioses are an attractive means of improving the efficiency of soil phosphorus (P) that difficult to be used by plants and may provide a sustainable way of maintaining high yields while reducing P applications. However, quantifying the contribution of indigenous AM fungi on phosphorus uptake and yields of maize (Zea mays L.) under field conditions is not particularly clear. Mesh-barrier compartments were applied to monitor the distribution of hyphal P uptake throughout the experimental period under different planting densities and soil depths, over two consecutive years. AM symbioses enhanced plant P-acquisition efficiency, especially during the silking stage, and hyphae of AM fungi was assessed to contribution 19.4% at most to total available P content of soil. Moreover, the pattern of AM depletion of soil P generally matched shoot nutrient demand under the high planting density, which resulted in significantly increased yield in 2014. Although the hyphal length density was significantly decreased with soil depth, AM fungi still had high potential for P supply in deeper soil. It demonstrates the great potential of indigenous AM fungi to maize productivity in the high-yield area of China, and it would further provide the possibility of elimination P fertilizer applications to maintain high yields.


Plant Disease ◽  
2020 ◽  
Vol 104 (6) ◽  
pp. 1694-1700
Author(s):  
Hai-Hua Wang ◽  
Can Yin ◽  
Jie Gao ◽  
Ran Tao ◽  
Chun-Yan Wang ◽  
...  

Esteya vermicola has been used as an effective biocontrol agent for the management of the pinewood nematode, Bursaphelenchus xylophilus. Tools for monitoring the colonization and parasitism patterns of E. vermicola are required for the development of highly effective biocontrol strategies. Because the TaqMan PCR technique is effective for quantification of species in environmental samples, a real-time PCR-based methodology was developed for absolute quantification of E. vermicola via internal standard addition and extrapolation of DNA quantity to hyphal length. Primers and a probe for the 28S ribosomal RNA gene of E. vermicola were designed, and nested TaqMan real-time PCR-based quantification was performed. In addition, internal standard-based yield measurement was correlated to the absolute quantity of target genomic DNA. Moreover, an extrapolation curve obtained by optical microscopy and image analysis of the mycelia was constructed for the measurement of fungal hyphal length. The absolute quantification method developed in the present study provides a sensitive and accurate technique to quantify fungal density in either wood or other substrate samples and can be used as an effective tool for future studies of biocontrol agents.


2019 ◽  
Vol 88 (3) ◽  
Author(s):  
Robert N. Tams ◽  
Andrew S. Wagner ◽  
Joseph W. Jackson ◽  
Eric R. Gann ◽  
Timothy E. Sparer ◽  
...  

ABSTRACT Candida albicans is a leading cause of systemic bloodstream infections, and synthesis of the phospholipid phosphatidylethanolamine (PE) is required for virulence. The psd1Δ/Δ psd2Δ/Δ mutant, which cannot synthesize PE by the cytidine diphosphate diacylglycerol (CDP-DAG) pathway, is avirulent in the mouse model of systemic candidiasis. Similarly, an ept1Δ/Δ mutant, which cannot produce PE by the Kennedy pathway, exhibits decreased kidney fungal burden in systemically infected mice. Conversely, overexpression of EPT1 results in a hypervirulent phenotype in this model. Thus, mutations that increase PE synthesis increase virulence, and mutations that decrease PE synthesis decrease virulence. However, the mechanism by which virulence is regulated by PE synthesis is only partially understood. RNA sequencing was performed on strains with deficient or excessive PE biosynthesis to elucidate the mechanism. Decreased PE synthesis from loss of EPT1 or PSD1 and PSD2 leads to downregulation of genes that impact mitochondrial function. Losses of PSD1 and PSD2, but not EPT1, cause significant increases in transcription of glycosylation genes, which may reflect the substantial cell wall defects in the psd1Δ/Δ psd2Δ/Δ mutant. These accumulated defects could contribute to the decreased virulence observed for mutants with deficient PE synthesis. In contrast to mutants with decreased PE synthesis, there were no transcriptional differences between the EPT1 overexpression strain and the wild type, indicating that the hypervirulent phenotype is a consequence of posttranscriptional changes. It was found that overexpression of EPT1 causes increased chitin content and increased hyphal length. These phenotypes may help to explain the previously observed hypervirulence in the EPT1 overexpressor.


2019 ◽  
Vol 31 (6) ◽  
pp. 2063-2073 ◽  
Author(s):  
Wenyuan He ◽  
Xiaoxu Fan ◽  
Zixin Zhou ◽  
Huanhuan Zhang ◽  
Xiang Gao ◽  
...  

Abstract We assessed the effects of arbuscular mycorrhizal fungi (AMF) Rhizophagus irregularis inoculation on salt stress tolerance in roots of the drought-tolerant plant Elaeagnus angustifolia. We studied a plant growth index, spore density and hyphal length density of AMF, the Na+ contents and ultrastructure of root cells, as well as rhizosphere soil enzyme activities of mycorrhizal and non-mycorrhizal E. angustifolia seedlings under different salt stress. Under salt stress, growth of E. angustifolia with mycorrhizal inoculation was higher than that of non-inoculated treatments. The spore density and hyphal length density decreased significantly under salt stress in rhizosphere soil of mycorrhizal E. angustifolia seedlings (p < 0.05). The root cells of E. angustifolia seedlings inoculated with R. irregularis at 300 mmol L−1 salt had more organelles, greater integrity, and lower root Na+ contents than those of non-inoculated seedlings. In addition, the results showed notably higher activities of catalase, phosphatase, urease and saccharase in rhizosphere soil of the mycorrhizal seedlings in response to salinity compared to those of the non-mycorrhizal seedlings. Therefore, AMF inoculation could enhance salt stress tolerance in roots of E. angustifolia.


Sign in / Sign up

Export Citation Format

Share Document