irrigation frequency
Recently Published Documents


TOTAL DOCUMENTS

402
(FIVE YEARS 88)

H-INDEX

23
(FIVE YEARS 3)

2022 ◽  
Vol 43 (2) ◽  
pp. 491-508
Author(s):  
Maria Fgênia Saldanha Diógenes ◽  
◽  
Vander Mendonça ◽  
Luciana Freitas de Medeiros Mendonça ◽  
Elias Ariel de Moura ◽  
...  

The initial development of pitayas may be limited by a few factors, among them, water deficit. Agricultural hydrogels can be used as an alternative to enhance the retention and availability of water and nutrients in the soil. Therefore, this study aimed to evaluate the influence of irrigation frequency and hydrogel doses on the development of white pitaya (Hylocereus undatus) seedlings to establish a time interval in days between irrigations that provides better seedling development and determine the hydrogel dose that provides a reduction of water consumption without damaging seedling development. The experimental design consisted of randomized blocks in a 4 x 4 factorial arrangement, in which the treatments corresponded to 4 hydrogel doses (0, 2, 4, and 6 g/plant of Biogel Hidro Plus) incorporated into the substrate and four irrigation frequencies (1, 3, 5, and 7 days of interval). The biometric characteristics, photosynthetic pigments, and organic and inorganic solutes of the plants were evaluated after 120 days. The use of daily irrigation negatively influenced the growth and biomass accumulation of the aerial part of the seedlings and, consequently, provided the lowest values of cladodes of the pitaya seedlings. Pitaya seedlings had greater development when using an irrigation frequency of around 3 days. The application of 6 g/plant of hydrogel provided the highest averages for accumulation of dry biomass, photosynthetic pigments, and organic and inorganic solutes at irrigation levels of 3.6, 4, and about 3.8 days of intervals, respectively. Hydrogel incorporation allowed increasing the interval between irrigations by 1 day without damages to the seedling development.


2022 ◽  
Vol 43 (2) ◽  
pp. 751-774
Author(s):  
Francisco Thiago Coelho Bezerra ◽  
◽  
Marlene Alexandrina Ferreira Bezerra ◽  
Raiff Ramos Almeida Nascimento ◽  
Walter Esfrain Pereira ◽  
...  

Salinity interferes in the physiology of seedlings from germination and seedling emergence, so it is necessary to adopt measures to mitigate its effects. The objectives of this research were to evaluate irrigation frequency, saline water, polymer, and container volume in the emergence and physiology of Talisia esculenta (A. St.-Hil.) Radlk. The treatments were obtained from the combination of polymer doses (0.0; 0.2; 0.6; 1.0; and 1.2 g dm-3), electrical conductivities of the irrigation water (0.3; 1, 1; 2.7; 4.3; and 5.0 dS m-1), and irrigation frequencies (daily and alternate), plus two additional treatments to assess the volume of the container. A randomized block design was used. Emergence and leaf indices of chlorophyll, fluorescence, and gas exchange were analyzed 100 days after sowing. The increase in electrical conductivity reduced and delayed seedling emergence. Decreasing irrigation frequency reduced the chlorophyll b index, stomatal conductance, transpiration, net CO2 assimilation, and carboxylation efficiency. The magnitude of the effects of electrical conductivity of water and polymer were associated with the frequency of irrigation. However, both salinity and polymer reduced practically all physiological variables. The reduction in container volume also affected the physiology of the seedlings, with more effects when irrigated on alternate days. The T. esculenta seedlings are considered sensitive to salinity, should be irrigated daily with water with less electrical conductivity than 1.0 dS m-1, as well as higher capacity containers used (0.75 vs 1.30 dm3).


Pedosphere ◽  
2022 ◽  
Vol 32 (3) ◽  
pp. 393-401
Author(s):  
Yuan LI ◽  
Gabriel Y.K. MOINET ◽  
Timothy J. CLOUGH ◽  
John E. HUNT ◽  
David WHITEHEAD

2022 ◽  
Vol 176 ◽  
pp. 114375
Author(s):  
Andrzej Sałata ◽  
Sara Lombardo ◽  
Gaetano Pandino ◽  
Giovanni Mauromicale ◽  
Halina Buczkowska ◽  
...  

2021 ◽  
Vol 13 (12) ◽  
pp. 5689-5710
Author(s):  
Yanhua Xie ◽  
Holly K. Gibbs ◽  
Tyler J. Lark

Abstract. Data on irrigation patterns and trends at field-level detail across broad extents are vital for assessing and managing limited water resources. Until recently, there has been a scarcity of comprehensive, consistent, and frequent irrigation maps for the US. Here we present the new Landsat-based Irrigation Dataset (LANID), which is comprised of 30 m resolution annual irrigation maps covering the conterminous US (CONUS) for the period of 1997–2017. The main dataset identifies the annual extent of irrigated croplands, pastureland, and hay for each year in the study period. Derivative maps include layers on maximum irrigated extent, irrigation frequency and trends, and identification of formerly irrigated areas and intermittently irrigated lands. Temporal analysis reveals that 38.5×106 ha of croplands and pasture–hay has been irrigated, among which the yearly active area ranged from ∼22.6 to 24.7×106 ha. The LANID products provide several improvements over other irrigation data including field-level details on irrigation change and frequency, an annual time step, and a collection of ∼10 000 visually interpreted ground reference locations for the eastern US where such data have been lacking. Our maps demonstrated overall accuracy above 90 % across all years and regions, including in the more humid and challenging-to-map eastern US, marking a significant advancement over other products, whose accuracies ranged from 50 % to 80 %. In terms of change detection, our maps yield per-pixel transition accuracy of 81 % and show good agreement with US Department of Agriculture reports at both county and state levels. The described annual maps, derivative layers, and ground reference data provide users with unique opportunities to study local to nationwide trends, driving forces, and consequences of irrigation and encourage the further development and assessment of new approaches for improved mapping of irrigation, especially in challenging areas like the eastern US. The annual LANID maps, derivative products, and ground reference data are available through https://doi.org/10.5281/zenodo.5548555 (Xie and Lark, 2021a).


HortScience ◽  
2021 ◽  
Vol 56 (10) ◽  
pp. 1221-1225
Author(s):  
Reagan W. Hejl ◽  
Benjamin G. Wherley ◽  
Charles H. Fontanier

Landscape irrigation frequency restrictions are commonly imposed by water purveyors and municipalities to curtail domestic water use and to ensure adequate water supplies for growing populations during times of drought. Currently, published data are lacking concerning irrigation frequency requirements necessary for sustaining acceptable levels of turfgrass quality of commonly used warm-season turfgrass species. The objective of this 3-year field study was to determine comparative turfgrass quality of drought-resistant cultivars of four warm-season lawn species in the south–central United States under irrigation frequency regimes of 0, 1, 2, 4, and 8× monthly. Turfgrasses used in the study were based on previously reported drought resistance and included ‘Riley’s Super Sport’ (Celebration®) bermudagrass [Cynodon dactylon (L.) Pers.], ‘Palisades’ zoysiagrass (Zoysia japonica Steud.), ‘Floratam’ st. augustinegrass [Stenotaphrum secundatum (Walt.) Kuntze], and ‘SeaStar’ seashore paspalum (Paspalum vaginatum Swartz). During each growing season, slightly reduced irrigation volumes and bypassed events resulted from the 8× monthly treatment (34.95 cm, 38.13 cm, and 27.33 cm) compared with the 4× monthly treatment (35.36 cm, 40.84 cm, and 28.70 cm) in years 1, 2, and 3, respectively. For the once weekly treatment, the average fraction of reference evapotranspiration (ETo) supplied by effective rainfall and irrigation during the summer months was 1.22, 0.67, and 0.83 in years 1, 2, and 3, respectively, and was generally adequate to support acceptable turfgrass quality of all warm-season turfgrasses evaluated. Under the less than weekly irrigation frequency, st. augustinegrass and seashore paspalum generally fell to below acceptable quality levels because the average fraction of ETo supplied by effective rainfall and irrigation during the summer months of years 2 and 3 was 0.51, 0.39, and 0.26 for the 2× monthly, 1× monthly, and unirrigated treatments, respectively. Bermudagrass generally outperformed all other species under the most restrictive irrigation frequencies and also did not differ statistically from zoysiagrass. These results show that as irrigation frequency is restricted to less than once per week, species selection becomes an important consideration.


2021 ◽  
pp. 31-38
Author(s):  
A. Bar-Tal ◽  
H. Heller ◽  
R. Shawahnae ◽  
M. Amichai ◽  
S. Cohen ◽  
...  
Keyword(s):  

Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1733
Author(s):  
Amir Haghverdi ◽  
Maggie Reiter ◽  
Amninder Singh ◽  
Anish Sapkota

As the drought conditions persist in California and water continues to become less available, the development of methods to reduce water inputs is extremely important. Therefore, improving irrigation water use efficiency and developing water conservation strategies is crucial for maintaining urban green infrastructure. This two-year field irrigation project (2018–2019) focused on the application of optical and thermal remote sensing for turfgrass irrigation management in central California. We monitored the response of hybrid bermudagrass and tall fescue to varying irrigation treatments, including irrigation levels (percentages of reference evapotranspiration, ETo) and irrigation frequency. The ground-based remote sensing data included NDVI and canopy temperature, which was subsequently used to calculate the crop water stress index (CWSI). The measurements were done within two hours of solar noon under cloud-free conditions. The NDVI and canopy temperature data were collected 21 times in 2018 and 10 times in 2019. For the tall fescue, a strong relationship was observed between NDVI and visual rating (VR) values in both 2018 (r = 0.92) and 2019 (r = 0.83). For the hybrid bermudagrass, there was no correlation in 2018 and a moderate correlation (r = 0.72) in 2019. There was a moderate correlation of 0.64 and 0.88 in 2018 and 2019 between tall fescue canopy minus air temperature difference (dt) and vapor pressure deficit (VPD) for the lower CWSI baseline. The correlation between hybrid bermudagrass dt and VPD for the lower baseline was 0.69 in 2018 and 0.64 in 2019. Irrigation levels significantly impacted tall fescue canopy temperature but showed no significant effect on hybrid bermudagrass canopy temperature. For the same irrigation levels, increasing irrigation frequency slightly but consistently decreased canopy temperature without compromising the turfgrass quality. The empirical CWSI values violated the minimum expected value (of 0) 38% of the time. Our results suggest NDVI thresholds of 0.6–0.65 for tall fescue and 0.5 for hybrid bermudagrass to maintain acceptable quality in the central California region. Further investigation is needed to verify the thresholds obtained in this study, particularly for hybrid bermudagrass, as the recommendation is only based on 2019 data. No CWSI threshold was determined to maintain turf quality in the acceptable range because of the high variability of CWSI values over time and their low correlation with VR values.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1666
Author(s):  
Amir Haghverdi ◽  
Maggie Reiter ◽  
Anish Sapkota ◽  
Amninder Singh

Research-based information regarding the accuracy and reliability of smart irrigation controllers for autonomous landscape irrigation water conservation is limited in central California. A two-year irrigation research trial (2018–2019) was conducted in Parlier, California, to study the response of hybrid bermudagrass and tall fescue to varying irrigation scenarios (irrigation levels and irrigation frequency) autonomously applied using a Weathermatic ET-based smart controller. The response of turfgrass species to the irrigation treatments was visually assessed and rated. In addition, turfgrass water response functions (TWRFs) were developed to estimate the impact of irrigation scenarios on the turfgrass species based on long-term mean reference evapotranspiration (ETo) data. The Weathermatic controller overestimated ETo between 5and 7% in 2018 and between 5 and 8% in 2019 compared with California Irrigation Management Information System values. The controller closely followed programmed watering-days restrictions across treatments in 2018 and 2019 and adjusted the watering-days based on ETo demand when no restriction was applied. The low half distribution uniformity and precipitation rate of the irrigation system were 0.78 and 28 mm h−1, respectively. The catch-cans method substantially underestimated the precipitation rate of the irrigation system and caused over-irrigation by the smart controller. No water-saving and turfgrass quality improvement was observed owing to restricting irrigation frequency (watering days). For the hybrid bermudagrass, the visual rating (VR) for 101% ETo treatment stayed above the minimum acceptable value of six during the trial. For tall fescue, the 108% ETo level with 3 d wk−1 frequency kept the VR values in the acceptable range in 2018 except for a short period in mid-trial. The TWRF provided a good fit to experimental data with r values of 0.79 and 0.75 for tall fescue and hybrid bermudagrass, respectively. The estimated VR values by TWRF suggested 70–80% ETo as the minimum irrigation application to maintain the acceptable hybrid bermudagrass quality in central California during the high water demand months (i.e., May to August) based on long-term mean ETo data. The TWRF estimations suggest that 100% ETo would be sufficient to maintain the tall fescue quality for only 55 days. This might be an overestimation impacted by the relatively small tall fescue VR data in 2019 owing to minimal fertilizer applications and should be further investigated in the future.


Sign in / Sign up

Export Citation Format

Share Document