exergy performance
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 63)

H-INDEX

21
(FIVE YEARS 8)

2022 ◽  
Vol 51 ◽  
pp. 101887
Author(s):  
Seyed Masoud Parsa ◽  
Alireza Yazdani ◽  
Hossein Aberoumand ◽  
Yousef Farhadi ◽  
Abolfazl Ansari ◽  
...  

Author(s):  
C. Manjunath ◽  
Jagannath Reddy ◽  
K. Sai Ranjith Reddy ◽  
I.R. Ganesh Kumar ◽  
S. Sanketh

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 205
Author(s):  
Alexandra Plesu Popescu ◽  
Yen Keong Cheah ◽  
Petar Sabev Varbanov ◽  
Jiří Jaromír Klemeš ◽  
Mohammad Reda Kabli ◽  
...  

Circular economy implementations tend to decrease the human pressure on the environment, but not all produce footprint reductions. That observation brings the need for tools for the evaluation of recycling processes. Based on the Exergy Footprint concept, the presented work formulates a procedure for its application to industrial chemical recycling processes. It illustrates its application in the example of cotton waste recycling. This includes the evaluation of the entire process chain of polyethylene synthesis by recycling cotton waste. The chemical recycling stages are identified and used to construct the entire flowsheet that eliminates the cotton waste and its footprints at the expense of additional exergy input. The exergy performance of the process is evaluated. The identified exergy assets and liabilities are 138 MJ/kg ethylene and 153 MJ/kg ethylene, reducing the Exergy Footprint by 75% and the greenhouse gas footprint by 43% compared to the linear pattern of polyethylene production. The exergy requirements for producing raw cotton constitute a large fraction of the liabilities, while the polyethylene degradation provides the main asset in the reduction of the Exergy Footprint.


Solar Energy ◽  
2021 ◽  
Vol 228 ◽  
pp. 1-11
Author(s):  
Selcuk Selimli ◽  
Hakan Dumrul ◽  
Sezayi Yilmaz ◽  
Ozgur Akman

2021 ◽  
Vol 39 (5) ◽  
pp. 1649-1658
Author(s):  
Subhash Chand ◽  
Prabha Chand

The aim of the present study to improve the performance of solar air heater because of low thermo-physical properties of air. In the current work, an attempt has been made to improve the performance of the heater by employing louvered fins to the absorber plate, as it not only enhances heat transfer coefficient but also improve heat transfer area. The effect of exergy performance on the geometrical parameters of louvered fin i.e., louvered angle, louvered pitch and louvered length has been studied and analyzed. The results are compared to plane solar air heater (PSAH) to evaluate the effectiveness of louvered finned solar air heater (LFSAH). The exergy efficiency of LFSAH is comparatively higher for all the operating conditions except for higher mass flow rate where it may even go below that of PSAH; possibly due to the higher pressure drop and more loss of exergy at high mass flow rate. In addition, the results conclude that for louvered parameters viz., louvered angle 20°, fin pitch to louvered pitch ratio 0.75 and louvered length to louvered pitch ratio 1.25, high exergy performance of SAH is obtained as compared to other louvered parameter values.


Solar Energy ◽  
2021 ◽  
Vol 225 ◽  
pp. 892-904
Author(s):  
A. Veera Kumar ◽  
T.V. Arjunan ◽  
D. Seenivasan ◽  
R. Venkatramanan ◽  
S. Vijayan ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
pp. 73-86
Author(s):  
Nima Norouzi ◽  

Current wind systems are intermittent and cannot be used as the baseload energy source. The research on the concept of wind power using direct thermal energy conversion and thermal energy storage, called wind powered Thermal Energy System (WTES), opened the door to a new energy system called Wind-thermal, which is a strategy for developing baseload wind power systems. The thermal energy is generated from the rotating energy directly at the top of the tower by the heat generator, which is a simple and light electric brake. The rest of the system is the same as the tower type concentrated solar power (CSP). This paper’s results suggest that the energy and exergy performance of the WTES (62.5% and 29.8%) is comparable to that of conventional wind power, which must be supported by the backup thermal plants and grid enhancement. This cogeneration nature of the WTES system makes this system suitable for using wind power as a direct heat source in several heat-demanding processes such as chemical production. Also, the light heat generator reduces some issues of wind power, such as noise and vibration, which are two main bottlenecks of the wind power technology.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4434
Author(s):  
Humphrey ADUN ◽  
Mustapha Mukhtar ◽  
Micheal Adedeji ◽  
Terfa Agwa ◽  
Kefas Hyelda Ibrahim ◽  
...  

The amelioration of photovoltaic (PV) and photovoltaic/thermal (PV/T) systems have garnered increased research interest lately, more so due to the discovery of the thermal property augmentation of nanofluids. The overarching goal of this study is to conduct a comparative analysis of mono, hybrid, and ternary hybrid nanofluids utilized as fluids for heat transfer applications and particularly as cooling mediums in PV/T applications. Al2O3, ZnO, Al2O3-ZnO, and Al2O3-ZnO-Fe3O4 nanofluids are synthesized at 1% volume concentration using the two-step method. The zeta potential tests carried out showed that the fluids have high stability. The numerical model developed in this study was validated using real data culled from Cyprus International University. The findings in this study showed that the Al2O3-ZnO-Fe3O4 ternary hybrid nanofluid and ZnO mono nanofluid were more efficient heat transfer fluids for the PV/T system. The optimum relative electrical PV/T efficiency against that of the PV is 8.13% while the electrical and thermal enhancement recorded in this study was 1.79% and 19.06%, respectively, measured for the ternary hybrid nanofluid based PV/T system. This present study shows that despite the limitation of pumping power and pressure drop associated with nanofluid in thermal systems, the close performance evaluation criterion values as compared with water is positive for practical utilization of nanofluid in PV/T systems.


Sign in / Sign up

Export Citation Format

Share Document