microbial community diversity
Recently Published Documents


TOTAL DOCUMENTS

171
(FIVE YEARS 58)

H-INDEX

27
(FIVE YEARS 7)

2021 ◽  
Vol 12 ◽  
Author(s):  
Jiamu Kang ◽  
Yunan Hu ◽  
Ziyuan Ding ◽  
Li Ye ◽  
Haoran Li ◽  
...  

The microbiota of the pretreatment phase is crucial to the assembly of the microbial community in the saccharification of fuyu-flavor baijiu. This study investigates the shifts in microbial community diversity from the pretreatment of raw materials to the end of saccharification. High-throughput sequencing reveals that Lactobacillus, Weissella, and Bacillus in the bacterial community and Rhizopus, Candida, Pichia, and Aspergillus in the fungal community are predominant during raw material pretreatment and saccharification processes. Also, 11 bacterial genera, including Bacillus, Lactobacillus, Leuconostoc, Weissella, Lactococcus, and Acetobacter, and eight yeast genera, including Candida, Pichia, Saccharomyces, and Wickerhamomyces, were isolated from the initial saccharification stage by culture-dependent approaches. Sourcetracker analysis indicates that the cooling grains and rice husks were the main contributors to the bacterial community composition of the saccharification process, and Qu was the main contributor to the shaping of the fungal community structure during the saccharification process. Abundance variation of the predictive functional profiles of microbial communities encoding for key enzymes involved in pyruvate metabolism, starch and sucrose metabolism, and glycolysis/gluconeogenesis during the pretreatment and saccharification phases were inferred by PICRUSt2 analysis. The results of this study will be utilized to produce consistently high-quality fuyu-flavor baijiu via better controlling the shaping of microbial community structures during the pretreatment and fermentation processes.


mSystems ◽  
2021 ◽  
Author(s):  
Zhi-Feng Zhang ◽  
Jie Pan ◽  
Yue-Ping Pan ◽  
Meng Li

As a key microbial community component with important ecological roles, archaea merit the attention of biologists and ecologists. The mechanisms controlling microbial community diversity, composition, and biogeography are central to microbial ecology but poorly understood.


Chemosphere ◽  
2021 ◽  
Vol 272 ◽  
pp. 129855
Author(s):  
Linqiong Wang ◽  
Yi Li ◽  
Zhe Zhao ◽  
Tristan Cordier ◽  
Isabelle A. Worms ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaolong Shi ◽  
Xinhua Zhao ◽  
Jinyao Ren ◽  
Jiale Dong ◽  
He Zhang ◽  
...  

Soil microorganisms play important roles in crop production and sustainable agricultural management. However, soil conditions and crop selection are key determining factors for soil microbial communities. This study investigated the effect of plant types and soil salinity on the microbial community of interspecific interaction zone (II) based on the sorghum/peanut intercropping system. Microbial community diversity and composition were determined through PacBio single molecule, real-time sequencing of 16S rDNA and internal transcribed spacer (ITS) genes. Results showed Proteobacteria, Bacteroidota, and Acidobacteriota to be the dominant bacterial phyla in IP, II, and IS, whereas Ascomycota, Basidiomycota, and Mucoromycota were the dominant fungal phyla. Under salt-treated soil conditions, the plants-specific response altered the composition of the microbial community (diversity and abundance). Additionally, the interspecific interactions were also helpful for maintaining the stability and ecological functions of microbial communities by restructuring the otherwise stable core microbiome. The phylogenetic structure of the bacterial community was greatly similar between IP and II while that of the fungal community was greatly similar between IP and IS; however, the phylogenetic distance between IP and IS increased remarkably upon salinity stress. Overall, salinity was a dominant factor shaping the microbial community structure, although plants could also shape the rhizosphere microenvironment by host specificity when subjected to environmental stresses. In particular, peanut still exerted a greater influence on the microbial community of the interaction zone than sorghum.


Sign in / Sign up

Export Citation Format

Share Document