viscoelastic properties
Recently Published Documents


TOTAL DOCUMENTS

4957
(FIVE YEARS 696)

H-INDEX

109
(FIVE YEARS 11)

Author(s):  
Sowmya N. Sundaresh ◽  
John D. Finan ◽  
Benjamin S. Elkin ◽  
Andrew V. Basilio ◽  
Guy M. McKhann ◽  
...  

2022 ◽  
Vol 13 ◽  
pp. 63-73
Author(s):  
Robin Vacher ◽  
Astrid S de Wijn

Friction and wear of polymers at the nanoscale is a challenging problem due to the complex viscoelastic properties and structure. Using molecular dynamics simulations, we investigate how a graphene sheet on top of the semicrystalline polymer polyvinyl alcohol affects the friction and wear. Our setup is meant to resemble an AFM experiment with a silicon tip. We have used two different graphene sheets, namely an unstrained, flat sheet, and one that has been crumpled before being deposited on the polymer. The graphene protects the top layer of the polymer from wear and reduces the friction. The unstrained flat graphene is stiffer, and we find that it constrains the polymer chains and reduces the indentation depth.


Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 89
Author(s):  
Ran Zhang ◽  
Haoxiang Wang ◽  
Jie Ji ◽  
Hainian Wang

The purpose of this study is to explore the viscoelastic properties, rutting resistance, and fatigue resistance of waste wood-based biochar-modified asphalt. The biochar with 2%, 4%, and 8% mixing amounts and two kinds of particle size, 75–150 μm and <75 μm, were used as modifiers of petroleum asphalt. Meanwhile, in the control group, a graphite modifier with a particle size of 0–75 μm and mixing amount of 4% was used for comparison. Aged asphalts were obtained in the laboratory by the Rolling Thin Film Oven (RTFO) test and the Pressure Aging Vessel (PAV) test. The viscoelastic properties, rutting resistance, and fatigue resistance of biochar-modified asphalt were evaluated by phase angle, critical high temperature, and fatigue cracking index by the Dynamic Shear Rheometer (DSR) test. In addition, the micromorphology of biochar and graphite was compared and observed by using the scanning electron microscope (SEM). The results show that increasing the mixing amount of biochar gave a higher elastic property and significantly better rutting resistance of the modified asphalt at high temperature. Compared with graphite, the biochar has a rougher surface and more pores, which provides its higher specific surface area. Therefore, it is easier to bond with asphalt to form a skeleton network structure, then forming a more stable biochar–asphalt base structure. In this way, compared to graphite-modified asphalt, biochar-modified asphalt showed better resistance to rutting at high temperature, especially for the asphalt modified with biochar of small particle size. The critical high temperature T(G*/sinδ) of 4% Gd, 4% WD, and 4% Wd was 0.31 °C, 1.57 °C, and 2.92 °C higher than that of petroleum bitumen. In addition, the biochar asphalt modified with biochar of small particle size had significantly better fatigue cracking resistance than the asphalt modified with biochar of large particle size. The fatigue cracking indexes for 2% Wd, 4% Wd, and 8% Wd were 29.20%, 7.21%, and 37.19% lower by average than those for 2% WD, 4% WD, and 8% WD at 13–37 °C. Therefore, the waste wood biochar could be used as the modifier for petroleum asphalt. After the overall consideration, the biochar-modified asphalt with 2%–4% mixing amount and particle size less than 75 μm was recommended.


2022 ◽  
Author(s):  
Richard Carl Gerum ◽  
Elham Mirzahossein ◽  
Mar Eroles ◽  
Jennifer Elsterer ◽  
Astrid Mainka ◽  
...  

Numerous cell functions are accompanied by phenotypic changes in viscoelastic properties, and measuring them can help elucidate higher-level cellular functions in health and disease. We present a high-throughput, simple and low-cost microfluidic method for quantitatively measuring the elastic (storage) and viscous (loss) modulus of individual cells. Cells are suspended in a high-viscosity fluid and are pumped with high pressure through a 5.8 cm long and 200 μm wide microfluidic channel. The fluid shear stress induces large, near ellipsoidal cell deformations. In addition, the flow profile in the channel causes the cells to rotate in a tank-treading manner. From the cell deformation and tank treading frequency, we extract the frequency-dependent viscoelastic cell properties based on a theoretical framework developed by R. Roscoe that describes the deformation of a viscoelastic sphere in a viscous fluid under steady laminar flow. We confirm the accuracy of the method using atomic force microscopy-calibrated polyacrylamide beads and cells. Our measurements demonstrate that suspended cells exhibit power-law, soft glassy rheological behavior that is cell cycle-dependent and mediated by the physical interplay between the actin filament and intermediate filament networks.


Gels ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 51
Author(s):  
Pradip Kumar Sukul ◽  
Puspendu Das ◽  
Gopal Lal Dhakar ◽  
Lalmohan Das ◽  
Sudip Malik

Herein, aggregation behaviors of melem or melamine in the presence of three symmetric carboxylic acids (1,3,5-tris(4-carboxyphenyl)benzene (TPCA), 1,3,5-benzene-tri-carboxylic acid (BTA) and 1,3,5-cyclohexane-tri-carboxylic acid (CHTA)) have been performed to check the influence of acid on the formation of aggregated structures which have been investigated by optical microscopy, FESEM, FTIR, XRD and viscoelastic properties have been explored with rheological studies. Interestingly, melem, that has limited solubility in aqueous medium, forms aggregation that leads to the formation of hydrogels with TPCA. More significantly, hydrogel is formed here by matching the size selectivity. Melem forms hydrogel with only large tricarboxylic acid, whereas melamine produces hydrogel with any kind of its counterpart from small to large tricarboxylic acid derivatives. Present investigations and results provide the strategy of design of organic self-assembled materials having two component systems.


2022 ◽  
Vol 13 (1) ◽  
pp. 5
Author(s):  
Antonino Cataldo ◽  
Matteo La Pietra ◽  
Leonardo Zappelli ◽  
Davide Mencarelli ◽  
Luca Pierantoni ◽  
...  

As part of a biopolymer matrix, pectin was investigated to obtain an engineered jam, due to its biodegradability. Only a few examples of pectin-based nanocomposites are present in the literature, and even fewer such bionanocomposites utilize nanocarbon as a filler—mostly for use in food packaging. In the present paper, ecofriendly nanocomposites made from household reagents and displaying multiple properties are presented. In particular, the electrical behavior and viscoelastic properties of a commercial jam were modulated by loading the jam with carbon nanotubes and graphene nanoplates. A new nanocomposite class based on commercial jam was studied, estimating the percolation threshold for each filler. The electrical characterization and the rheological measurements suggest that the behavior above the percolation threshold is influenced by the different morphology—i.e., one-dimensional or two-dimensional—of the fillers. These outcomes encourage further studies on the use of household materials in producing advanced and innovative materials, in order to reduce the environmental impact of new technologies, without giving up advanced devices endowed with different physical properties.


Geofluids ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Salem Basfar ◽  
Ashraf Ahmed ◽  
Salaheldin Elkatatny

The sagging tendency of hematite in drilling mud is a common challenge occurring at high-pressure and high-temperature (HP/HT) applications. This work studies the performance of hematite-based invert emulsion mud for HP/HT conditions and provides a solution to prevent the hematite settlement using a combination of ilmenite with hematite. Practical mud formulation was utilized over a range of ilmenite/hematite ratios (0/100, 20/80, 40/60, and 50/50%) to study sagging behaviour. From the sag tests, the optimum combination proportion was determined. Thereafter, the density, emulsion stability, rheological and viscoelastic properties, and filtration conduct for the formulated mud were evaluated. The experiments were conditioned as per the standards of the American Petroleum Institute. The obtained results of sagging experiments indicated that including 50% of ilmenite mitigated the hematite settling and reduced the sag tendency towards the safe range. A slight drop (4%) in mud weight was noticed upon adding the ilmenite, whereas the emulsion stability was enhanced from 551 to 574 volts with the 50% ilmenite content. The rheology and viscoelasticity measurements showed that 50/50% combination improved the yield point (YP) by 50% with a trivial 1 cP increment on plastic viscosity (PV), hence enhancing the YP/PV ratio by 46%. Also, the gelling strength was enhanced resulting in flat rheology and better gel structure. The filtration behaviour of 50% ilmenite mud was improved compared to blank hematite as it resulted in 21, 15, and 17% reduction on the filtrated volume, filter cake weight, and thickness, respectively. This study provides a solution for hematite sagging issue at HP/HT using combined weighting agents, which contributes to enhancing the mud stability and avoiding several well control issues and related operational and technical challenges that eventually will economize the drilling cost and time.


Sign in / Sign up

Export Citation Format

Share Document