directed acyclic graph
Recently Published Documents


TOTAL DOCUMENTS

367
(FIVE YEARS 153)

H-INDEX

21
(FIVE YEARS 5)

2022 ◽  
Vol 40 (1) ◽  
pp. 1-23
Author(s):  
Xiao Zhang ◽  
Meng Liu ◽  
Jianhua Yin ◽  
Zhaochun Ren ◽  
Liqiang Nie

With the increasing prevalence of portable devices and the popularity of community Question Answering (cQA) sites, users can seamlessly post and answer many questions. To effectively organize the information for precise recommendation and easy searching, these platforms require users to select topics for their raised questions. However, due to the limited experience, certain users fail to select appropriate topics for their questions. Thereby, automatic question tagging becomes an urgent and vital problem for the cQA sites, yet it is non-trivial due to the following challenges. On the one hand, vast and meaningful topics are available yet not utilized in the cQA sites; how to model and tag them to relevant questions is a highly challenging problem. On the other hand, related topics in the cQA sites may be organized into a directed acyclic graph. In light of this, how to exploit relations among topics to enhance their representations is critical. To settle these challenges, we devise a graph-guided topic ranking model to tag questions in the cQA sites appropriately. In particular, we first design a topic information fusion module to learn the topic representation by jointly considering the name and description of the topic. Afterwards, regarding the special structure of topics, we propose an information propagation module to enhance the topic representation. As the comprehension of questions plays a vital role in question tagging, we design a multi-level context-modeling-based question encoder to obtain the enhanced question representation. Moreover, we introduce an interaction module to extract topic-aware question information and capture the interactive information between questions and topics. Finally, we utilize the interactive information to estimate the ranking scores for topics. Extensive experiments on three Chinese cQA datasets have demonstrated that our proposed model outperforms several state-of-the-art competitors.


Author(s):  
Feipeng Wang ◽  
Diana Filipa Araújo ◽  
Yan-Fu Li

The recent social trends and accelerated technological progress culminated in the development of autonomous vehicles (AVs). Reliability assessment for AV systems is in high demand before its market launch. In safety-critical systems (SCSs) such as AV systems, the reliability concept should be broadened to consider more safety-related issues. In this paper, reliability is defined as the probability that the system performs satisfactorily for a given period of time under stated conditions. This paper proposes a reliability assessment framework of AV, consisting of three main stages: (i) modeling the safety control structure through the Systems-Theoretic Accident Model and Processes (STAMP); (ii) mapping the control structure and functional relationships to a directed acyclic graph (DAG); and (iii) construct a Bayesian network (BN) on DAG to assess the system reliability. The fully automated (level 5) vehicle system is shown as a numeric example to illustrate how this suggested framework works. A brief discussion on involving human factors in systems to analyze lower levels of automated vehicles is also included, demonstrating the need for further research on real case studies.


2021 ◽  
Vol 14 (4) ◽  
pp. 1-15
Author(s):  
Zhenghua Gu ◽  
Wenqing Wan ◽  
Jundong Xie ◽  
Chang Wu

Performance optimization is an important goal for High-level Synthesis (HLS). Existing HLS scheduling algorithms are all based on Control and Data Flow Graph (CDFG) and will schedule basic blocks in sequential order. Our study shows that the sequential scheduling order of basic blocks is a big limiting factor for achievable circuit performance. In this article, we propose a Dependency Graph (DG) with two important properties for scheduling. First, DG is a directed acyclic graph. Thus, no loop breaking heuristic is needed for scheduling. Second, DG can be used to identify the exact instruction parallelism. Our experiment shows that DG can lead to 76% instruction parallelism increase over CDFG. Based on DG, we propose a bottom-up scheduling algorithm to achieve much higher instruction parallelism than existing algorithms. Hierarchical state transition graph with guard conditions is proposed for efficient implementation of such high parallelism scheduling. Our experimental results show that our DG-based HLS algorithm can outperform the CDFG-based LegUp and the state-of-the-art industrial tool Vivado HLS by 2.88× and 1.29× on circuit latency, respectively.


2021 ◽  
Author(s):  
Giovanni Briganti ◽  
Marco Scutari ◽  
Richard J. McNally

Bayesian Networks are probabilistic graphical models that represent conditional independence relationships among variables as a directed acyclic graph (DAG), where edges can be interpreted as causal effects connecting one causal symptom to an effect symptom. These models can help overcome one of the key limitations of partial correlation networks whose edges are undirected. This tutorial aims to introduce Bayesian Networks to identify admissible causal relationships in cross-sectional data, as well as how to estimate these models in R through three algorithm families with an empirical example data set of depressive symptoms. In addition, we discuss common problems and questions related to Bayesian networks. We recommend Bayesian networks be investigated to gain causal insight in psychological data.


2021 ◽  
Vol 3 (4) ◽  
pp. 417-434
Author(s):  
Kfir Eliaz ◽  
Ran Spiegler ◽  
Yair Weiss

Beliefs and decisions are often based on confronting models with data. What is the largest “fake” correlation that a misspecified model can generate, even when it passes an elementary misspecification test? We study an “analyst” who fits a model, represented by a directed acyclic graph, to an objective (multivariate) Gaussian distribution. We characterize the maximal estimated pairwise correlation for generic Gaussian objective distributions, subject to the constraint that the estimated model preserves the marginal distribution of any individual variable. As the number of model variables grows, the estimated correlation can become arbitrarily close to one regardless of the objective correlation. (JEL D83, C13, C46, C51)


Foundations ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 271-285
Author(s):  
Giacomo Ortali ◽  
Ioannis G. Tollis

In a dominance drawing Γ of a directed acyclic graph (DAG) G, a vertex v is reachable from a vertex u if, and only if all the coordinates of v are greater than or equal to the coordinates of u in Γ. Dominance drawings of DAGs are very important in many areas of research. They combine the aspect of drawing a DAG on the grid with the fact that the transitive closure of the DAG is apparently obvious by the dominance relation between grid points associated with the vertices. The smallest number d for which a given DAG G has a d-dimensional dominance drawing is called dominance drawing dimension, and it is NP-hard to compute. In this paper, we present efficient algorithms for computing dominance drawings of G with a number of dimensions respecting theoretical bounds. We first describe a simple algorithm that shows how to compute a dominance drawing of G from its compressed transitive closure. Next, we describe a more complicated algorithm, which is based on the concept of modular decomposition of G, and obtaining dominance drawings with a lower number of dimensions. Finally, we consider the concept of weak dominance, a relaxed version of the dominance, and we discuss interesting experimental results.


Author(s):  
Caixiang Fan ◽  
Sara Ghaemi ◽  
Hamzeh Khazaei ◽  
Yuxiang Chen ◽  
Petr Musilek

Distributed ledgers (DLs) provide many advantages over centralized solutions in Internet of Things projects, including but not limited to improved security, transparency, and fault tolerance. To leverage DLs at scale, their well-known limitation (i.e., performance) should be adequately analyzed and addressed. Directed acyclic graph-based DLs have been proposed to tackle the performance and scalability issues by design. The first among them, IOTA, has shown promising signs in addressing the preceding issues. IOTA is an open source DL designed for the Internet of Things. It uses a directed acyclic graph to store transactions on its ledger, to achieve a potentially higher scalability over blockchain-based DLs. However, due to the uncertainty and centralization of the deployed consensus, the current IOTA implementation exposes some performance issues, making it less performant than the initial design. In this article, we first extend an existing simulator to support realistic IOTA simulations and investigate the impact of different design parameters on IOTA’s performance. Then, we propose a layered model to help the users of IOTA determine the optimal waiting time to resend the previously submitted but not yet confirmed transaction. Our findings reveal the impact of the transaction arrival rate, tip selection algorithms, weighted tip selection algorithm randomness, and network delay on the throughput. Using the proposed layered model, we shed some light on the distribution of the confirmed transactions. The distribution is leveraged to calculate the optimal time for resending an unconfirmed transaction to the DL. The performance analysis results can be used by both system designers and users to support their decision making.


Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2282
Author(s):  
Alberto Partida ◽  
Regino Criado ◽  
Miguel Romance

The transformation of time series into complex networks through visibility graphs is an innovative way to study time-based events. In this work, we use visibility graphs to transform IOTA and IoTeX price volatility time series into complex networks. Our aim is twofold: first, to better understand the markets of the two most capitalised Internet of Things (IoT) platforms at the time of writing. IOTA runs on a public directed acyclic graph (DAG) and IoTeX on a blockchain. Second, to suggest how 5G can improve information security in these two key IoT platforms. The analysis of the networks created by the natural and horizontal visibility graphs shows, first, that both IOTA and IoTeX are still at their infancy in their development, with IoTex seemingly developing faster. Second, both IoT tokens form communities in a hierarchical structure, and third, 5G can accelerate their development. We use intentional risk management as a lever to understand the impact of 5G on IOTA and IoTeX. Our results lead us to provide a set of design recommendations that contribute to improving information security in future 5G-based IoT implementations.


2021 ◽  
Vol 9 (5) ◽  
pp. 1239-1250
Author(s):  
Philippe Steer

Abstract. Numerical modelling offers a unique approach to understand how tectonics, climate and surface processes govern landscape dynamics. However, the efficiency and accuracy of current landscape evolution models remain a certain limitation. Here, I develop a new modelling strategy that relies on the use of 1D analytical solutions to the linear stream power equation to compute the dynamics of landscapes in 2D. This strategy uses the 1D ordering, by a directed acyclic graph, of model nodes based on their location along the water flow path to propagate topographic changes in 2D. This analytical model can be used to compute in a single time step, with an iterative procedure, the steady-state topography of landscapes subjected to river, colluvial and hillslope erosion. This model can also be adapted to compute the dynamic evolution of landscapes under either heterogeneous or time-variable uplift rate. This new model leads to slope–area relationships exactly consistent with predictions and to the exact preservation of knickpoint shape throughout their migration. Moreover, the absence of numerical diffusion or of an upper bound for the time step offers significant advantages compared to numerical models. The main drawback of this novel approach is that it does not guarantee the time continuity of the topography through successive time steps, despite practically having little impact on model behaviour.


Sign in / Sign up

Export Citation Format

Share Document