data detection
Recently Published Documents


TOTAL DOCUMENTS

918
(FIVE YEARS 273)

H-INDEX

32
(FIVE YEARS 7)

Author(s):  
Min Fang

At present, the hotel resource retrieval algorithm has the problem of low retrieval efficiency, low accuracy, low security and high energy consumption, and this study proposes a large scale hotel resource retrieval algorithm based on characteristic threshold extraction. In the large-scale hotel resource data, the mass sequence is decomposed into periodic component, trend component, random error component and burst component. Different components are extracted, the singular point detection is realized by the extraction results, and the abnormal data in the hotel resource data are obtained. Based on the attribute of hotel resource data, the data similarity is processed with variable window, the total similarity of data is obtained, and the abnormal detection of redundant resource data is realized. The abnormal data detection results and redundant data detection results are substituted into the space-time filter, and the data processing is completed. The retrieval problem is identified, and the data processing results are replaced in the hotel resource retrieval based on the characteristic threshold extraction to achieve the normalization of data source and rule knowledge. The characteristic threshold and retrieval strategy are determined, and data fusion reasoning is carried out. After repeated iteration, effective solutions are obtained. The effective solution is fused to get the best retrieval result. Experimental results showed that the algorithm has higher retrieval accuracy, efficiency and security coefficient, and the average search energy consumption is 56n J/bit.


Author(s):  
Jialin Dong ◽  
Jun Zhang ◽  
Yuanming Shi ◽  
Jessie Hui Wang
Keyword(s):  

2021 ◽  
Vol 18 (4) ◽  
pp. 932-937
Author(s):  
E. L. Efimova ◽  
V. V. Brzheskiy

The problem of drug therapy for bacterial eye infections in children has remained relevant for many years. The greatest interest of ophthalmologists in recent years is associated with the use of fluoroquinolones in the treatment of inflammatory eye diseases of the bacterial etiology. At the same time, new ophthalmic dosage forms of fluoroquinolones that have appeared in recent years naturally require additional research on their effectiveness.Objective: to study the clinical efficacy of the antibacterial drug Oftocypro (0.3 % cyprofloxacin in ophthalmic ointment) in the treatment of chronic blepharoconjunctivitis in children.Materials. The study involved 38 children aged 3 to 18 years (mean age 10.3 ± 2.7 years) with clinical manifestations of blepharoconjunctivitis. All patients were divided into 2 groups of equal size: 18 children (36 eyes) — with bacterial blepharoconjunctivitis and 20 (40) — with chlamydial blepharoconjunctivitis. The diagnosis was verified based on the clinical picture of blepharoconjunctivitis and laboratory data: detection of pathogenic microflora in the conjunctival cavity of patients of the first group and chlamydia antigen — in epithelial cells in scraping material from the conjunctiva by immunohistochemical analysis.Results. The analysis of the data obtained during the examination and treatment of children with blepharoconjunctivitis of bacterial etiology (group I), a reliable dynamics of controlled clinical and laboratory parameters was established. There was a significant positive dynamics of all controlled parameters of the clinical course of chronic bacterial blepharoconjunctivitis against the background of the drug Oftocipro ophthalmic ointment 0.3 % use. All children with chronic chlamydial blepharoconjunctivitis with the background of treatment with Oftocypro, ophthalmic ointment 0.3 %, showed a steady tendency towards relief of the estimated clinical signs of the disease. According to the results of laboratory studies, it was found that on the 28th day of treatment with Oftocypro chlamydia in the cells of the epithelium of the conjunctiva was re-detected in 4 out of 20 patients (20 %).Conclusion. The high efficacy of the drug Oftocypro ophthalmic ointment 0.3 %, in combination with the absence of pronounced side effects, makes it possible to recommend this drug for wider practical use.


2021 ◽  
Author(s):  
Shah Mahdi Hasan ◽  
Kaushik Mahata ◽  
Md Mashud Hyder

To support the explosive growth of the Internet of Things (IoT), Uplink (UL) grant-free Non-Orthogonal Multiple Access (NOMA) emerges as a promising technology. It has the potential of offering scalable and low-cost solutions for the resource-constrained Massive Machine Type Communication (mMTC) systems. In principle, the grant-free NOMA enables small signaling overhead and low access latency time by circumventing complicated grant-access based procedures which is commonly found in the legacy wireless networks. In a UL grant-free system, a complete Multi-User Detection (MUD) algorithm not only performs the Active User Detection (AUD) but also the Channel Estimation (CE) and the Data Detection (DD). By exploiting the naturally occurring sparse user activity in the mMTC systems, the MUD problem can be solved using a wide range of Compressive Sensing based algorithms (CS-MUD). However, some alternative routes have been explored in the literature as well. The utility of these algorithms, in general, revolve around some assumptions about the channel or the availability of perfect channel information at the Base Station (BS). How these assumptions are met in a practical circumstance is, however, an important concern. In this work we devise an end-to-end MUD using Deep Neural Network (DNN) where we relax these assumptions. We approximate an ensemble of trained DNN based MUD using Knowledge Distillation (KD) to enable fast AUD at the Base Station (BS). Furthermore, using the inter-resource correlation, we estimate the channels of the active users which is an ill-posed problem otherwise. We carry out elaborate numerical investigation to validate the efficacy of the proposed approach for the UL grant-free NOMA systems.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xiaogang Chen

With the rapid development of Internet of things and information technology, wireless sensor network technology is widely used in industrial monitoring. However, limited by the architecture characteristics, software and hardware characteristics, and complex external environmental factors of wireless sensor networks, there are often serious abnormalities in the monitoring data of wireless sensor networks, which further affect the judgment and response of users. Based on this, this paper optimizes and improves the fault detection algorithm of related abnormal data analysis in wireless sensor networks from two angles and verifies the algorithm at the same time. In the first level, aiming at the problem of insufficient spatial cooperation faced by the network abnormal data detection level, this paper first establishes a stable neighbor screening model based on the wireless network and filters and analyzes the reliability of the network cooperative data nodes and then establishes the detection data stability evaluation model by using the spatiotemporal correlation corresponding to the data nodes. Realize abnormal data detection. On the second level, aiming at the problem of wireless network abnormal event detection, this paper proposes a spatial clustering optimization algorithm, which mainly clusters the detection data flow in the wireless network time window through the clustering algorithm, and analyzes the clustering data, so as to realize the detection of network abnormal events, so as to retain the characteristics of events and further classify the abnormal data events. This paper will verify the realizability and superiority of the improved optimization algorithm through simulation technology. Experiments show that the fault detection rate based on abnormal data analysis is as high as 97%, which is 5% higher than the traditional fault detection rate. At the same time, the corresponding fault false detection rate is low and controlled below 1%. The efficiency of this algorithm is about 10% higher than that of the traditional algorithm.


2021 ◽  
Author(s):  
Shah Mahdi Hasan ◽  
Kaushik Mahata ◽  
Md Mashud Hyder

To support the explosive growth of the Internet of Things (IoT), Uplink (UL) grant-free Non-Orthogonal Multiple Access (NOMA) emerges as a promising technology. It has the potential of offering scalable and low-cost solutions for the resource-constrained Massive Machine Type Communication (mMTC) systems. In principle, the grant-free NOMA enables small signaling overhead and low access latency time by circumventing complicated grant-access based procedures which is commonly found in the legacy wireless networks. In a UL grant-free system, a complete Multi-User Detection (MUD) algorithm not only performs the Active User Detection (AUD) but also the Channel Estimation (CE) and the Data Detection (DD). By exploiting the naturally occurring sparse user activity in the mMTC systems, the MUD problem can be solved using a wide range of Compressive Sensing based algorithms (CS-MUD). However, some alternative routes have been explored in the literature as well. The utility of these algorithms, in general, revolve around some assumptions about the channel or the availability of perfect channel information at the Base Station (BS). How these assumptions are met in a practical circumstance is, however, an important concern. In this work we devise an end-to-end MUD using Deep Neural Network (DNN) where we relax these assumptions. We approximate an ensemble of trained DNN based MUD using Knowledge Distillation (KD) to enable fast AUD at the Base Station (BS). Furthermore, using the inter-resource correlation, we estimate the channels of the active users which is an ill-posed problem otherwise. We carry out elaborate numerical investigation to validate the efficacy of the proposed approach for the UL grant-free NOMA systems.


2021 ◽  
Author(s):  
Shah Mahdi Hasan ◽  
Kaushik Mahata ◽  
Md Mashud Hyder

To support the explosive growth of the Internet of Things (IoT), Uplink (UL) grant-free Non-Orthogonal Multiple Access (NOMA) emerges as a promising technology. It has the potential of offering scalable and low-cost solutions for the resource-constrained Massive Machine Type Communication (mMTC) systems. In principle, the grant-free NOMA enables small signaling overhead and low access latency time by circumventing complicated grant-access based procedures which is commonly found in the legacy wireless networks. In a UL grant-free system, a complete Multi-User Detection (MUD) algorithm not only performs the Active User Detection (AUD) but also the Channel Estimation (CE) and the Data Detection (DD). By exploiting the naturally occurring sparse user activity in the mMTC systems, the MUD problem can be solved using a wide range of Compressive Sensing based algorithms (CS-MUD). However, some alternative routes have been explored in the literature as well. The utility of these algorithms, in general, revolve around some assumptions about the channel or the availability of perfect channel information at the Base Station (BS). How these assumptions are met in a practical circumstance is, however, an important concern. In this work we devise an end-to-end MUD using Deep Neural Network (DNN) where we relax these assumptions. We approximate an ensemble of trained DNN based MUD using Knowledge Distillation (KD) to enable fast AUD at the Base Station (BS). Furthermore, using the inter-resource correlation, we estimate the channels of the active users which is an ill-posed problem otherwise. We carry out elaborate numerical investigation to validate the efficacy of the proposed approach for the UL grant-free NOMA systems.


Sign in / Sign up

Export Citation Format

Share Document