fast growing
Recently Published Documents


TOTAL DOCUMENTS

2453
(FIVE YEARS 722)

H-INDEX

74
(FIVE YEARS 9)

Fuel ◽  
2022 ◽  
Vol 315 ◽  
pp. 123182
Author(s):  
RR Dirgarini J.N. Subagyono ◽  
Polonius Dosi Miten ◽  
Ruth Junita Sinaga ◽  
Ardiana Wijayanti ◽  
Ying Qi ◽  
...  
Keyword(s):  

2022 ◽  
Vol 6 (1) ◽  
pp. 37
Author(s):  
Cristina I. Muresan ◽  
Isabela Birs ◽  
Clara Ionescu ◽  
Eva H. Dulf ◽  
Robin De De Keyser

The scientific community has recently seen a fast-growing number of publications tackling the topic of fractional-order controllers in general, with a focus on the fractional order PID. Several versions of this controller have been proposed, including different tuning methods and implementation possibilities. Quite a few recent papers discuss the practical use of such controllers. However, the industrial acceptance of these controllers is still far from being reached. Autotuning methods for such fractional order PIDs could possibly make them more appealing to industrial applications, as well. In this paper, the current autotuning methods for fractional order PIDs are reviewed. The focus is on the most recent findings. A comparison between several autotuning approaches is considered for various types of processes. Numerical examples are given to highlight the practicality of the methods that could be extended to simple industrial processes.


Thorax ◽  
2022 ◽  
pp. thoraxjnl-2021-217576
Author(s):  
Mette Kolpen ◽  
Kasper Nørskov Kragh ◽  
Juan Barraza Enciso ◽  
Daniel Faurholt-Jepsen ◽  
Birgitte Lindegaard ◽  
...  

BackgroundA basic paradigm of human infection is that acute bacterial disease is caused by fast growing planktonic bacteria while chronic infections are caused by slow-growing, aggregated bacteria, a phenomenon known as a biofilm. For lung infections, this paradigm has been thought to be supported by observations of how bacteria proliferate in well-established growth media in the laboratory—the gold standard of microbiology.ObjectiveTo investigate the bacterial architecture in sputum from patients with acute and chronic lung infections.MethodsAdvanced imaging technology was used for quantification and direct comparison of infection types on fresh sputum samples, thereby directly testing the acute versus chronic paradigm.ResultsIn this study, we compared the bacterial lifestyle (planktonic or biofilm), growth rate and inflammatory response of bacteria in freshly collected sputum (n=43) from patient groups presenting with acute or chronic lung infections. We found that both acute and chronic lung infections are dominated by biofilms (aggregates of bacteria within an extracellular matrix), although planktonic cells were observed in both sample types. Bacteria grew faster in sputum from acute infections, but these fast-growing bacteria were enriched in biofilms similar to the architecture thought to be reserved for chronic infections. Cellular inflammation in the lungs was also similar across patient groups, but systemic inflammatory markers were only elevated in acute infections.ConclusionsOur findings indicate that the current paradigm of equating planktonic with acute and biofilm with chronic infection needs to be revisited as the difference lies primarily in metabolic rates, not bacterial architecture.


2022 ◽  
Vol 14 (2) ◽  
pp. 316
Author(s):  
Changhyeon Kim ◽  
Marc W. van Iersel

Fast growth and rapid turnover is an important crop trait in controlled environment agriculture (CEA) due to its high cost. An ideal screening approach for fast-growing cultivars should detect desirable phenotypes non-invasively at an early growth stage, based on morphological and/or physiological traits. Hence, we established a rapid screening protocol based on a simple chlorophyll fluorescence imaging (CFI) technique to quantify the projected canopy size (PCS) of plants, combined with electron transport rate (ETR) measurements using a chlorophyll fluorometer. Eleven lettuce cultivars (Lactuca sativa), selected based on morphological differences, were grown in a greenhouse and imaged twice a week. Shoot dry weight (DW) of green cultivars at harvest 51 days after germination (DAG) was correlated with PCS at 13 DAG (R2 = 0.74), when the first true leaves had just appeared and the PCS was <8.5 cm2. However, early PCS of high anthocyanin (red) cultivars was not predictive of DW. Because light absorption by anthocyanins reduces the amount of photons available for photosynthesis, anthocyanins lower light use efficiency (LUE; DW/total incident light on canopy over the cropping cycle) and reduce growth. Additionally, the total incident light on the canopy throughout the cropping cycle explained 90% and 55% of variability in DW within green and red cultivars, respectively. Estimated leaf level ETR at a photosynthetic photon flux density (PPFD) of 200 or 1000 µmol m−2 s−1 were not correlated with DW in either green or red cultivars. In conclusion, early PCS quantification is a useful tool for the selection of fast-growing green lettuce phenotypes. However, this approach may not work in cultivars with high anthocyanin content because anthocyanins direct excitation energy away from photosynthesis and growth, weakening the correlation between incident light and growth.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 257
Author(s):  
Wen He ◽  
Rui Wang ◽  
Feiyu Guo ◽  
Jizhou Cao ◽  
Zhihao Guo ◽  
...  

There has been growing interest in transparent conductive substrates due to the prevailing flexible electron devices and the need for sustainable resources. In this study, we demonstrated a transparent fast-growing poplar veneers prepared by acetylated modification, followed by the infiltration of epoxy resin. The work mainly focused on the effect of acetylation treatment using a green catalyst of 4-Dimethylpyridine on the interface of the bulk fast-growing poplar veneer, and the result indicated that the interface hydrophobicity was greatly enhanced due to the higher substitute of acetyl groups; therefore, the interface compatibility between the cell wall and epoxy resin was improved. The obtained transparent fast-growing poplar veneers, hereafter referred to as TADPV, displayed a superior optical performance and flexibility, in which the light transmittance and haze were 90% and 70% at a wavelength of 550 nm, respectively, and the bending radius and bending angle parallel to grain of TADPV were 2 mm and 130°, respectively. Moreover, the tensile strength and tensile modulus of the TADPV were around 102 MPa and 198 MPa, respectively, which is significantly better than those of the plastic substrates used in flexible electron devices. At the same time, the thermal conductivity tests indicated that TADPV has a low coefficient of thermal conductivity of 0.34 Wm−1 K−1, which can completely meet the needs of transparent conductive substrates. Therefore, the obtained TADPV can be used as a candidate for a flexible transparent substrate of electron devices.


2022 ◽  
Author(s):  
Zhengwei Zhang ◽  
Jingjie Ge ◽  
Kai Jing ◽  
Yefeng Chen ◽  
Yihui Guan ◽  
...  

Abstract 6-[18F]fluoro-L-DOPA is a radiotracer widely used in the diagnosis of a range of diseases, including neuro-oncology, endocrinology, and Parkinson’s disease. To meet the fast growing clinical need for this radioactive compound, this study reports an optimized radiosynthsis of this molecule, which proved to be highly reliable and compatible with different types of automated radiosynthesizers. Moreover, with 6-[18F]fluoro-L-DOPA, the PET/CT imaging of a total of 23 patients has been conducted, further demonstrating this radiotracer as a clinically valuable reagent to diagnose congenital hyperinsulinism (CHI) of infancy and, more importantly, localize the exact lesion on pancreas.


2022 ◽  
Author(s):  
Emmanuel Blas Patricio-Rangel ◽  
Verónica Salazar ◽  
Omar Cortezano-Arellano ◽  
Daniel Mendoza-Espinosa

The chemistry of multinuclear metal complexes bearing by N-heterocyclic carbene (NHC) ligands, is an area of fast growing interest in modern organometallic chemistry. In particular, complexes supported by mesoionic (MIC)...


2022 ◽  
Vol 2159 (1) ◽  
pp. 012001
Author(s):  
A Altamirano-Fernández ◽  
A Rojas-Palma ◽  
S Espinoza-Meza

Abstract Fast-growing forest plantations play an important role in reducing global warming and have great potential for carbon capture. In this study, we aimed to model the dynamics of carbon capture in fast-growing plantations. A mathematical model is proposed consisting of a tridimensional nonlinear system. The variables involved are the amount of living biomass, the intrinsic growth of biomass, and the burned area by forestry fire. The environmental humidity is also considered, assumed as a parameter by simplicity. The solutions of the model are approximated numerically by the Runge-Kutta fourth-order method. Once the equilibria of the model have been obtained and its local stability determined, the analysis of the model reveals that the living biomass, as well as the stored carbon, decreases in each harvest cycle as a consequence of the negative effects of fire on soil properties. Furthermore, the model shows that the maximum area burned is attained always after the maximum volume of biomass is obtained. Numerical simulations show that the model solutions are reasonable for the growth dynamics of a plantation, from a theoretical perspective. The mathematical results suggest that a suitable optimal management strategy to avoid biomass losses in the successive regeneration cycles of the plantation is the prevention of fires together with soil fertilization, applied to fast-growing plantations.


Author(s):  
Tarang Singhal

Abstract: In today’s fast growing world, The Information is the most powerful tool. A Doctor is an expert in medical sciences, an Engineer is an expert in Technical things similarly a fitness trainer is an expert in fitness related things. But What if a Person has some problem like a technical problem and he is not an expert in technical things ? In such situations A Person wants to have some expert advice. Now to overcome such problems a person may want to communicate with someone who is an expert in his problem domain. So Our Goal of the project is to reduce the gap between the problem seeker and the experts.


Sign in / Sign up

Export Citation Format

Share Document