silver silver chloride
Recently Published Documents


TOTAL DOCUMENTS

273
(FIVE YEARS 35)

H-INDEX

27
(FIVE YEARS 5)

2022 ◽  
Vol 2 ◽  
Author(s):  
Min Suk Lee ◽  
Akshay Paul ◽  
Yuchen Xu ◽  
W. David Hairston ◽  
Gert Cauwenberghs

With the rising need for on-body biometric sensing, the development of wearable electrophysiological sensors has been faster than ever. Surface electrodes placed on the skin need to be robust in order to measure biopotentials from the body reliably and comfortable for extended wearability. The electrical stability of nonpolarizable silver/silver chloride (Ag/AgCl) and its low-cost, commercial production have made these electrodes ubiquitous health sensors in the clinical environment, where wet gels and long wires are accommodated by patient immobility. However, smaller, dry electrodes with wireless acquisition are essential for truly wearable, continuous health sensing. Currently, techniques for the robust fabrication of custom Ag/AgCl electrodes are lacking. Here, we present three methods for the fabrication of Ag/AgCl electrodes: oxidizing Ag in a chlorine solution, electroplating Ag, and curing Ag/AgCl ink. Each of these methods is then used to create three different electrode shapes for wearable application. Bench-top and on-body evaluation of the electrode techniques was achieved by electrochemical impedance spectroscopy (EIS), calculation of variance in electrocardiogram (ECG) measurements, and analysis of auditory steady-state response (ASSR) measurement. Microstructures produced on the electrode by each fabrication technique were also investigated with scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The custom Ag/AgCl electrodes were found to be efficient in comparison with standard, commercial Ag/AgCl wet electrodes across all three of our presented techniques, with Ag/AgCl ink shown to be the better out of the three in bench-top and biometric recordings.


Author(s):  
Amer Th. Al-Taee ◽  
Aws Z. Al-Hafidh

A square wave voltammetric technique coupled with three electrode detection system consist of hanging mercury drop electrode (HMDE) as working electrode, 1mm platinum wire as an auxiliary electrode (Pt-wire) and silver/silver chloride saturated potassium chloride (Ag/AgCl.sat.KCl) as reference electrode was used to determine the chlorpropamide indirectly through its interaction with valsartan, chlorpropamide gives no reduction peaks in the studied range. The effect of pH and the stability of the measurement were examined calibrations curve of chlorpropamide was constructed and the relation between current and concentration of chlorpropamide was linear with R2 value = 0.9944. The limit of detection for chlorpropamide was 4.89 x 10-9 M through its interaction with valsartan.


2021 ◽  
Vol 7 (2) ◽  
pp. 9-12
Author(s):  
Indhika Fauzhan Warsito ◽  
René Machts ◽  
Stefan Griebel ◽  
Patrique Fiedler ◽  
Jens Haueisen

Abstract Dry electrodes enable a shorter preparation time for infant EEG. Since infant skin is more sensitive than adult skin, soft electrodes are required to reduce the mechanical stress for this sensitive skin. Thus, soft electrodes are crucial for eventual repetitive and long-term use like in neonatal intensive care units. A biocompatible polyurethane (PU) can be produced in low hardness resulting in a soft and flexible electrode substrate. Silver/silver chloride (Ag/AgCl) electroless plating provides a conductive, electrochemically stable coating but the process may alter the mechanical properties of the electrode substrate. In this study, we assess the hardness of PU material before and after Ag/AgCl plating. The test sample design for Shore hardness measurement is based on ISO 7619-1:2010. Sample production consists of a 3D print master model, silicone molding, PU casting, and finally electroless plating. UPX 8400-1 (Sika AG, Switzerland) is used for the sample substrates. Test samples are produced with 7 different Shore hardness (range A40-A95) and 14 samples (each hardness: 1 uncoated and 1 coated). The hardness measurements are carried out with a lever-operated test stand Shore hardness tester model with a digital hardness tester (TI-AC with HDA 100-1, KERN &SOHN GmbH, Germany).. It is shown that there is a hardness increase (Shore A) due to Ag/AgCl coating with a grand average of 1.1±0.7 (p<0.05). The largest increase of 2.1±0.2 is seen on the initial lowest Shore hardness sample (Shore hardness: 43.4±0.1). The absolute increase of hardness due to the Ag/AgCl coating decreases with increasing substrate hardness. It is concluded that there is no strong hardness increase of PU substrates due to Ag/AgCl plating. Therefore, the material is suitable as a soft electrode for repetitive and long-term use in infant applications.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4726
Author(s):  
Marcela-Elisabeta Barbinta-Patrascu ◽  
Yulia Gorshkova ◽  
Camelia Ungureanu ◽  
Nicoleta Badea ◽  
Gizo Bokuchava ◽  
...  

The phyto-development of nanomaterials is one of the main challenges for scientists today, as it offers unusual properties and multifunctionality. The originality of our paper lies in the study of new materials based on biomimicking lipid bilayers loaded with chlorophyll, chitosan, and turmeric-generated nano-silver/silver chloride particles. These materials showed a good free radical scavenging capacity between 76.25 and 93.26% (in vitro tested through chemiluminescence method) and a good antimicrobial activity against Enterococcus faecalis bacterium (IZ > 10 mm). The anticancer activity of our developed bio-based materials was investigated against two cancer cell lines (human colorectal adenocarcinoma cells HT-29, and human liver carcinoma cells HepG2) and compared to one healthy cell line (human fibroblast BJ cell line). Cell viability was evaluated for all prepared materials after a 24 h treatment and was used to select the biohybrid with the highest therapeutic index (TI); additionally, the hemolytic activity of the samples was also evaluated. Finally, we investigated the morphological changes induced by the developed materials against the cell lines studied. Biophysical studies on these materials were done by correlating UV–Vis and FTIR absorption spectroscopy, with XRD, SANS, and SAXS methods, and with information provided by microscopic techniques (AFM, SEM/EDS). In conclusion, these “green” developed hybrid systems are an important alternative in cancer treatment, and against health problems associated with drug-resistant infections.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1962
Author(s):  
Lingjun Li ◽  
Guangli Li ◽  
Yuliang Cao ◽  
Yvonne Yanwen Duan

High-definition transcranial direct current stimulation (HD-tDCS) is a promising non-invasive neuromodulation technique, which has been widely used in the clinical intervention and treatment of neurological or psychiatric disorders. Sintered Ag/AgCl electrode has become a preferred candidate for HD-tDCS, but its service life is very short, especially for long-term anodal stimulation. To address this issue, a novel highly durable conductive carbon/silver/silver chloride composite (C/Ag/AgCl) electrode was fabricated by a facile cold rolling method. The important parameters were systematically optimized, including the conductive enhancer, the particle size of Ag powder, the C:Ag:PTFE ratio, the saline concentration, and the active substance loading. The CNT/Ag/AgCl-721 electrode demonstrated excellent specific capacity and cycling performance. Both constant current anodal polarization and simulated tDCS measurement demonstrated that the service life of the CNT/Ag/AgCl-721 electrodes was 15-16 times of that of sintered Ag/AgCl electrodes. The much longer service life can be attributed to the formation of the three-dimensional interpenetrating conductive network with CNT doping, which can maintain a good conductivity and cycling performance even if excessive non-conductive AgCl is accumulated on the surface during long-term anodal stimulation. Considering their low cost, long service life, and good skin tolerance, the proposed CNT/Ag/AgCl electrodes have shown promising application prospects in HD-tDCS, especially for daily life scenarios.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1811
Author(s):  
Yulia Gorshkova ◽  
Marcela-Elisabeta Barbinta-Patrascu ◽  
Gizo Bokuchava ◽  
Nicoleta Badea ◽  
Camelia Ungureanu ◽  
...  

Silver/silver chloride nanoparticles (Ag/AgClNPs), with a mean size of 48.2 ± 9.5 nm and a zeta potential value of −31.1 ± 1.9 mV, obtained by the Green Chemistry approach from a mixture of nettle and grape extracts, were used as “building blocks” for the “green” development of plasmonic biohybrids containing biomimetic membranes and chitosan. The mechanism of biohybrid formation was elucidated by optical analyses (UV–vis absorption and emission fluorescence, FTIR, XRD, and SAXS) and microscopic techniques (AFM and SEM). The aforementioned novel materials showed a free radical scavenging capacity of 75% and excellent antimicrobial properties against Escherichia coli (IGZ = 45 mm) and Staphylococcus aureus (IGZ = 35 mm). The antiproliferative activity of biohybrids was highlighted by a therapeutic index value of 1.30 for HT-29 cancer cells and 1.77 for HepG2 cancer cells. At concentrations below 102.2 µM, these materials are not hemolytic, so they will not be harmful when found in the bloodstream. In conclusion, hybrid systems based on phyto-Ag/AgClNPs, artificial cell membranes, and chitosan can be considered potential adjuvants in liver and colorectal cancer treatment.


2020 ◽  
Vol 9 (6) ◽  
pp. 2311-2318
Author(s):  
Syaidah Md Saleh ◽  
Nurul Ashikin Abdul-Kadir ◽  
Fauzan Khairi Che Harun ◽  
Dedy H. B. Wicaksono

The increasing demand of smart garment for monitoring people’s health is due to comfortability, lightweight and flexibility properties of the textile could offer to the user. The textile-based electrocardiography (ECG) electrode is an alternative of commercially available silver/silver chloride (Ag/AgCl) electrode which could cause skin allergies to certain users and is not suitable for long-term monitoring electrode. In this paper, we report the performance of reduced graphene oxide (rGO) coated cotton fabric electrode to the effect of longevity and temperature. The ECG waveform and signal-to noise ratio (SNR) of the rGO-coated cotton electrodes were compared to that the performance of Ag/AgCl electrodes. The reliability characterization confirmed the rGO-coated cotton fabric conductance maintain at more than 80% even after 100 days of fabrication and the conductance measurement is increasing with respect to the temperature applied. The electrode shows lower in impedance value and the performance in acquiring ECG signal is comparable with the Ag/AgCl electrode. The vertical position rectangle-shaped electrode is recommended in measuring ECG signals. In conclusion, the rGO-coated cotton electrode with flexible dry-type electrode and excellent performance especially reliability and in capturing ECG signal had shown a promising result for further development.


Sign in / Sign up

Export Citation Format

Share Document