weathered granite
Recently Published Documents


TOTAL DOCUMENTS

234
(FIVE YEARS 55)

H-INDEX

19
(FIVE YEARS 5)

Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3453
Author(s):  
Tianyu Sun ◽  
Longzhou Deng ◽  
Kai Fei ◽  
Xiaojuan Fan ◽  
Liping Zhang ◽  
...  

Soils developed from the parent materials of highly weathered granite are particularly susceptible to soil erosion. Therefore, it is of great significance to conduct in-depth research on runoff characteristics and soil loss mechanisms in weathered granite areas. Using the weathered granite area in the hilly region of southeastern China as the research object, we conducted indoor artificial rainfall simulation experiments involving three slope steepnesses (SSs), 8°, 15°, and 25°, and five rainfall intensities (RIs), 0.5, 1.0, 1.5, 2.0, and 2.5 mm/min. The results showed that sediment load (SL) has positively linear relationships with mean runoff velocity (V), Reynolds number (Re), Froude number (Fr), shear stress (τ), and stream power (w). The eroded sediment was principally composed of silt and clay that accounted for 65.41–73.41% of the total SL. There was a boundary point at 0.02 mm for the particle size distribution (PSD) of the eroded sediment. The enrichment ratio (Er) of sand-grained particles (0.02–2 mm) ranged from approximately 0.45 to 0.65, while the Er of fine-grained particles (<0.02 mm) ranged from approximately 1.37 to 1.80. These results increase our understanding of the relationships among RI, SS, runoff, and soil losses from weathered granite hillslopes, particularly the relationships between different hydraulic parameters and sediment size characteristics.


2021 ◽  
Vol 118 ◽  
pp. 104183
Author(s):  
Danial Jahed Armaghani ◽  
Saffet Yagiz ◽  
Edy Tonnizam Mohamad ◽  
Jian Zhou

2021 ◽  
Vol 861 (7) ◽  
pp. 072146
Author(s):  
X H Bao ◽  
H J Zhang ◽  
Q Zhu ◽  
S Feng ◽  
J Q Jia ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Suping Zheng

In order to investigate the mechanism of water-rich and fully weathered granite on the water bursting and mud bursting, the single-factor variable method is adopted in this study. The particle size gradation, initial porosity, water pressure, confining pressure, and anti-outburst thickness are chosen to determine each factor on the evolution of sand gushing, porosity, permeability, fine particle concentration, and water gushing velocity. Results indicate that a particle loss is the most critical reason for the water bursting and mud bursting of water-rich and fully weathered granite. The transition of water bursting from the linear to the nonlinear stage is the most significant feature. Soil particles with a larger Talbol power index are more likely to lead to water bursting. In addition, there is a critical water pressure to control the occurrence of water bursting and mud bursting. It is found that when the confining pressure reached the soil yield strength, the evolution of water bursting and mud bursting is independent of the increase in confining pressure. The increase in anti-outburst thickness can also effectively limit the risk of water bursting and mud bursting.


Water ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2330
Author(s):  
Kyeong-Su Kim ◽  
Sueng-Won Jeong ◽  
Young-Suk Song ◽  
Minseok Kim ◽  
Joon-Young Park

To build a comprehensive understanding of long-term hydro-mechanical processes that lead to shallow landslide hazards, this study explicitly monitored the volumetric water content (VWC) and rainfall amount for a weathered granite soil slope over a four year period. From the 12 operational landslide monitoring stations installed across South Korea, the Songnisan station was selected as the study site. VWC sensors were placed in the subsurface with a grid-like arrangement at depths of 0.5 and 1.0 m. Shallow landslide hazards were evaluated by applying an infinite slope stability model that adopted a previously proposed unified effective stress concept. By analyzing the variations in the monitored VWC values, the derived matric suctions and suction stresses, and the calculated factor of safety values, we were able to obtain numerous valuable insights. In particular, the seasonal effects of drainage and evapotranspiration on the slope moisture conditions and slope stability were addressed. Preliminary test results indicated that continuous rainfall successfully represented the derived matric suction conditions at a depth of 1.0 m in the lower slope, although this was not the case for the upper and middle slopes. The significance of a future study on cumulative field monitoring data from various sites in different geological conditions is highlighted.


2021 ◽  
Vol 21 (3) ◽  
pp. 163-169
Author(s):  
Sungyeol Lee ◽  
Sunggon Kim ◽  
Wonjin Baek ◽  
Sungjin Kwon ◽  
Changsung Jung ◽  
...  

Recently, soil-cement is being increasingly used in various applications such as road pavements, slope protection, backfilling of earth walls, and improving soft ground, in order to increase the strength of the raw material soil. Therefore, in this study, the characteristics of changes in the unconfined compression strength of soil-cement were analyzed by adding a solidifying agent targeting granite soil, which is representatively distributed in Korea. Laboratory tests were conducted to analyze the changes in strength according to 1) curing conditions and fine contents, 2) inorganic solidifying agent, and 3) repeated effects of dry and wet conditions. The unconfined compression strength of soil-cement increased as the curing period and mixing ratio increased, and it was constant after 14 days of curing. In addition, weathered granite soil with relatively low fine contents showed a large increase in the unconfined compression strength. In addition, the strength increased with an increase in the solidifying agent added. X-ray-diffraction analysis showed that vermiculite was generated by adding cement and admixtures, and the strength was increased by filling the gap between the particles. Considering the results of this study, a relationship between the unconfined compression strength and the elastic modulus of soil-cement by treatment with a solidifying agent was proposed.


Sign in / Sign up

Export Citation Format

Share Document