evaporative fraction
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 26)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Vol 310 ◽  
pp. 108619
Author(s):  
Yibo Sun ◽  
Bilige Sude ◽  
Bing Geng ◽  
Junyong Ma ◽  
Xingwen Lin ◽  
...  

2021 ◽  
Vol 13 (18) ◽  
pp. 3764
Author(s):  
Patient Mindje Kayumba ◽  
Gonghuan Fang ◽  
Yaning Chen ◽  
Richard Mind’je ◽  
Yanan Hu ◽  
...  

The Yanqi basin is the main irrigated and active agroecosystem in semi-arid Xinjiang, northwestern China, which further seeks responses to the profound local water-related drawbacks in relation to the unceasing landscape desiccation and scant precipitation. Yet, it comes as an astonishment that a few reported near-surface items and water vapor fluxes as so far required for water resources decision support, particularly in a scarce observation data region. As a contributive effort, here we adjusted the sensible heat flux (H) calibration mechanism of Surface Energy Balance Algorithm for Land (SEBAL) to high-resolution satellite dataset coupled with in-situ observation, through a wise guided “anchor” pixel assortment from surface reflectance-α, Leaf area index-LAI, vegetation index-NDVI, and surface temperature (Pcold, Phot) to model the robustness of energy fluxes and Evapotranspiration-ETa over the basin. Results reasonably reflected ETa which returned low RMSE (0.6 mm d−1), MAE (0.48 mm d−1) compared to in-situ recordings, indicating the competence of SEBAL to predict vapor fluxes in this region. The adjustment unveiled the estimates of the land-use contribution to evapotranspiration with an average ranging from 3 to 4.69 mm d−1, reaching a maximum of 5.5 mm d−1. Furthermore, findings showed a high striking energy dissipation (LE/Rn) across grasslands and wetlands. The vegetated surfaces with a great evaporative fraction were associated with the highest LE/Rn (70–90%), and water bodies varying between 20% and 60%, while the desert ecosystem dissipated the least energy with a low evaporative fraction. Still, besides high portrayed evaporation in water, grasslands and wetlands varied interchangeably in accounting for the highest ETa followed by cropland. Finally, a substantial nexus between available energy (Rn-G) and ETa informed the available energy, influenced by NDVI to be the primary driver of these oases’ transpiration. This study provides essentials of near-surface energy fluxes and the likelihood of ETa with considerable baseline inferences for Yanqi that may be beneficial for long-term investigations that will attend in agrometeorological services and sustainable management of water resources in semi-arid regions.


2021 ◽  
Author(s):  
Michael Ek ◽  
Bert Holtslag

<p>Land-atmosphere coupling involves the interaction between the land-surface and the overlying atmospheric boundary layer, with effects on and by the free atmosphere above, and then with associated downstream impacts on clouds, convection and precipitation. We focus on the "terrestrial leg" of land-atmosphere coupling, that is, the near-surface land-atmosphere interaction where changing soil moisture affects the surface evapotranspiration. (The "atmospheric leg" of land-atmosphere coupling involves changes in surface fluxes and the effects on the atmospheric boundary layer, with those downstream impacts.) The change in surface evapotranspiration, or evaporative fraction, with changing soil moisture is an indicator of the strength of coupling between the soil/surface and the near-surface atmosphere, where for strong coupling, a given change in soil moisture yields a large change in the evaporative fraction, and for weak coupling, a given change in soil moisture yields a small change in the evaporative fraction. The strength of coupling depends on a number of different conditions and processes, i.e. the nature of the surface-layer turbulence, to what degree the surface is vegetated and by what type of vegetation, what the soil texture is, and how plant transpiration and soil hydraulic and soil thermal processes change with changing soil moisture. We examine this terrestrial leg of land-atmosphere coupling with an analytical development using the Penman-Monteith equation, then evaluate several years of fluxnet data sets from multiple sites to characterize these interactions on the local scale, contrasting different landscapes, e.g. grasslands versus forests, and other surface types. Initial findings show stronger coupling over forests. </p>


2021 ◽  
Author(s):  
Chandan Sarangi ◽  
Tirthankar Chakraborty ◽  
Sachchidanand Tripathi ◽  
Mithun Krishnan ◽  
Ross Morrison ◽  
...  

2021 ◽  
Author(s):  
Chandan Sarangi ◽  
Tirthankar Chakraborty ◽  
Sachchidanand Tripathi ◽  
Mithun Krishnan ◽  
Ross Morrison ◽  
...  

Abstract. North India is a densely populated subtropical region with heavy aerosol loading, frequent heatwaves and strong atmosphere-biosphere coupling, making it ideal for studying the impacts of aerosols and temperature variation on latent heat flux (LH) and evaporative fraction (EF). Here, using in situ observations during the onset of the summer monsoon over a semi-natural grassland site in this region, we confirm that strong co-variability exists among aerosols, LH, air temperature (Tair) and vapor pressure deficit (VPD). Since the surface evapotranspiration is strongly controlled by both physical (available energy and moisture demand) and physiological (canopy and aerodynamic resistance) factors, we separately analyze our data for different combinations of aerosols and Tair/VPD changes. We find that aerosol loading and heatwave conditions both reduces SH. Further, we find that an increase in atmospheric VPD, tends to decrease the gross primary production (GPP) and thus LH, most likely as a response to stomatal closure of the dominant grasses at this location. In contrast, under heavy aerosol loading, LH is enhanced partly due to the physiological control exerted by the diffuse radiation fertilization effect (thus increasing EF). Moreover, LH and EF are positively associated with aerosol loading even under heatwave conditions, indicating a decoupling of plant’s response to VPD enhancement (stomatal closure) in presence of high aerosol conditions. With heat-stress, VPD and aerosols expected to increase in future India, our results warrant in-depth analysis of aerosol-plant-temperature-EF continuum and its impact on Indian monsoon dynamics and crop vulnerability.


2021 ◽  
Author(s):  
Maria Piles ◽  
Miriam Pablos Hernandez ◽  
Mercè Vall-llossera ◽  
Gerard Portal ◽  
Ionut Sandric ◽  
...  

<p>Earth Observation (EO) makes it possible to obtain information on key parameters characterizing interactions among Earth’s system components, such as evaporative fraction (EF) and surface soil moisture (SSM). Notably, techniques utilizing EO data of land surface temperature (Ts) and vegetation index (VI) have shown promise in this regard. The present study presents an implementation of a downscaling method that combined the soil moisture product from SMOS and the Fractional Vegetation Cover provided by Sentinel 3 ESA platform.</p><p>The applicability of the investigated technique is demonstrated for a period of two years (2017-2018) using in-situ data acquired from five CarboEurope sites and from all the sites available in the REMEDHUS soil moisture monitoring network, representing a variety of climatic, topographic and environmental conditions. Predicted parameters were compared against co-orbital ground measurements acquired from several European sites belonging to the CarboEurope ground observational network.</p><p>Results indicated a close agreement between all the inverted parameters and the corresponding in-situ data. SSM maps predicted from the “triangle”  SSM showed a small bias,<sup></sup> but a large scatter. The results of this study provide strong supportive evidence of the potential value of the investigated herein methodology in accurately deriving estimates of key parameters characterising land surface interactions that can meet the needs of fine-scale hydrological applications. Moreover, the applicability of the presented approach demonstrates the added value of the synergy between ESA’s operational products acquired from different satellite sensors, namely in this case SMOS & Sentienl-3. As it is not tight to any particular sensor can also be implemented with technologically advanced EO sensors launched recently or planned to be launched.</p><p>In the present work Dr Petropoulos participation has received funding from the European Union’s Horizon 2020 research and innovation programme ENViSIoN under the Marie Skłodowska-Curie grant agreement No 752094.</p>


2021 ◽  
Author(s):  
Annu Panwar ◽  
Axel Kleidon

<p>The diurnal variations of surface and air temperature are related but their different responses to evaporative conditions can inform us about land-atmosphere interactions, extreme events, and their response to global change. Here, we evaluate the sensitivity of the diurnal ranges of surface (DT<sub>s</sub>R) and air (DT<sub>a</sub>R) temperature to evaporative fraction, across short vegetation, savanna, and forests at 106 Fluxnet observational sites and in the ERA5 global reanalysis. We show that the sensitivity of DT<sub>s</sub>R to evaporative fraction depends on vegetation type, whereas for DT<sub>a</sub>R it does not. Using FLUXNET data we found that on days with low evaporative fraction, DT<sub>s</sub>R is enhanced by up to 20 °C (30 °C in ERA5) in short vegetation, whereas only by 8 °C (10 °C in ERA5) in forests. Particularly, in short vegetation, ERA5 shows stronger responses, which is attributable to a negative bias on days with the high evaporative fraction. ERA5 also tends to have lower shortwave and longwave radiation input when compared to FLUXNET data. Contrary to DT<sub>s</sub>R, DT<sub>a</sub>R responds rather similarly to evaporative fraction irrespective of vegetation type (8 °C in FLUXNET, 10 °C in ERA5). To explain this, we show that the DT<sub>a</sub>R response to the evaporative fraction is compensated for differences in atmospheric boundary layer height by up to 2000 m, which is similar across vegetation types. We demonstrate this with a simple boundary layer heat storage calculation, indicating that DT<sub>a</sub>R is primarily shaped by changes in boundary layer heat storage whereas DT<sub>s</sub>R mainly responds to solar radiation, evaporation, and vegetation.  Our study reveals some systematic biases in ERA5 that need to be considered when using its temperature products for understanding land-atmosphere interactions or extreme events. To conclude, this study demonstrates the importance of vegetation and the dynamics of the atmospheric boundary layer in regulating diurnal variations in surface and air temperature under different evaporative conditions.</p>


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 189
Author(s):  
Hassan Awada ◽  
Simone Di Prima ◽  
Costantino Sirca ◽  
Filippo Giadrossich ◽  
Serena Marras ◽  
...  

Quantifying actual evapotranspiration (ETa) over natural vegetation is crucial in evaluating the water status of ecosystems and the water-use patterns in local or regional hydrological basins. Remote sensing-based surface energy balance models have been used extensively for estimating ETa in agro-environments; however, the application of these models to natural ecosystems is still limited. The surface energy balance algorithm for land (SEBAL) physical-based surface energy balance model was applied to estimate the actual evapotranspiration over a heterogeneous coverage of Mediterranean maquis in a natural reserve in Sardinia, Italy. The model was applied on 19 Landsat 5 and 8 images from 2009 to 2014, and the results were compared to the data of a micrometeorological station with eddy covariance flux measurements. Comparing the SEBAL-based evaporative fraction (ΛS) to the corresponding tower-derived evaporative fractions (ΛT) showed good flux estimations in the Landsat overpass time (Coefficient of determination R2 = 0.77, root mean square error RMSE = 0.05 and mean absolute error MAE = 0.076). Three methods were evaluated for upscaling instantaneous latent heat flux (λE) to daily actual evapotranspiration (ETa,D). The upscaling methods use the evaporative fraction (Λ), the reference evapotranspiration fraction (EFr) and the ratio of daily to instantaneous incoming shortwave radiation (Rs24/Rsi) as upscaling factors under the hypothesis of diurnal self-preservation. A preliminary analysis performed using only in-situ measured data demonstrated that the three factors were relatively self-preserved during the daytime, and can yield good ETa,D estimations, particularly when obtained at near the Landsat scene acquisition time (≈10:00 UTC). The upscaling factors obtained from SEBAL retrieved instantaneous fluxes, and some ancillary measured meteorological data were used to upscale SEBAL-estimated instantaneous actual λ to daily ET. The Λ EFr and Rs24/Rsi methods on average overestimated the measured ETa,D by nearly 20, 61 and 18%, respectively. The performance of the Λ and Rs24/Rsi methods was considered satisfactory, bearing in mind the high variable ground cover and the inherent variability of the biome composition, which cannot be properly represented in the Landsat moderate spatial resolution. In this study, we tested the potential of the SEBAL model application in a complex natural ecosystem. This modeling approach will be used to represent the spatial dynamics of ET, which will be integrated into further environmental and hydrological applications.


Sign in / Sign up

Export Citation Format

Share Document