soil column
Recently Published Documents


TOTAL DOCUMENTS

900
(FIVE YEARS 254)

H-INDEX

40
(FIVE YEARS 6)

2022 ◽  
Vol 20 (2) ◽  
pp. e1258
Author(s):  
Vanda Adamcová ◽  
Martin Valica ◽  
Jozef Gubiš ◽  
Marcela Gubišová ◽  
Katarína Ondreičková ◽  
...  

The aim of the work was to characterize the samples of sewage sludge (SSL) originated from the Wastewater Treatment Plant Piešťany (TAVOS, a.s., Trnava, Slovakia) in terms of their potential application into the soils. Within the physico-chemical characterization of SSL, the samples were analysed in terms of the values of pH, cation exchange capacity (CEC), total organic carbon (TOC), water holding capacity (WHC), as well as the presence of heavy metals. It was found that SSL contained significant amounts of microelements Zn (1,269 mg.kg-1, d.w.) and Cu (224 mg.kg-1, d.w.). Laboratory lysimeter experiments involving the application of SSL into the top layer of agriculturally used soil (0 – 10 cm) forming a soil column, in which seedlings of tobacco (Nicotiana tabacum L.) were cultivated, showed that in the case of SSL application in the highest permitted amounts (15 t.ha-1) only 0.11 % Zn and 0.07 % Cu were released into the soil eluate during a 28 day of exposure, while in tobacco plants 0.13 % Zn and 0.05 % Cu were accumulated from the total amount of Zn and Cu originated from the application of SSL (Zn – 133 mg and Cu – 23.5 mg). When applying SSL in amount 30 t.ha-1 i.e., in the dose exceeding the permitted limits, only 0.02 % Zn and 0.04 % Cu were released into the soil eluate and 0.16 % Zn and 0.09 % Cu were accumulated in tobacco plants from the applied amount of SSL (Zn – 267 mg and Cu – 47.0 mg).


2022 ◽  
Vol 15 (1) ◽  
pp. 75-104
Author(s):  
Niccolò Tubini ◽  
Riccardo Rigon

Abstract. This paper presents WHETGEO and its 1D deployment: a new physically based model simulating the water and energy budgets in a soil column. The purpose of this contribution is twofold. First, we discuss the mathematical and numerical issues involved in solving the Richardson–Richards equation, conventionally known as the Richards equation, and the heat equation in heterogeneous soils. In particular, for the Richardson–Richards equation (R2) we take advantage of the nested Newton–Casulli–Zanolli (NCZ) algorithm that ensures the convergence of the numerical solution in any condition. Second, starting from numerical and modelling needs, we present the design of software that is intended to be the first building block of a new customizable land-surface model that is integrated with process-based hydrology. WHETGEO is developed as an open-source code, adopting the object-oriented paradigm and a generic programming approach in order to improve its usability and expandability. WHETGEO is fully integrated into the GEOframe/OMS3 system, allowing the use of the many ancillary tools it provides. Finally, the paper presents the 1D deployment of WHETGEO, WHETGEO-1D, which has been tested against the available analytical solutions presented in the Appendix.


Soil Systems ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 4
Author(s):  
Maman Nassirou Ado ◽  
Didier Michot ◽  
Yadji Guero ◽  
Zahra Thomas ◽  
Christian Walter

Soil salinity due to irrigation is a major constraint to agriculture, particularly in arid and semi-arid zones, due to water scarcity and high evaporation rates. Reducing salinity is a fundamental objective for protecting the soil and supporting agricultural production. The present study aimed to empirically measure and simulate with a model, the reduction in soil salinity in a Vertisol by the cultivation and irrigation of Echinochloa stagnina. Laboratory soil column experiments were conducted to test three treatments: (i) ponded bare soil without crops, (ii) ponded soil cultivated with E. stagnina in two successive cropping seasons and (iii) ponded soil permanently cultivated with E. stagnina with a staggered harvest. After 11 months of E. stagnina growth, the electrical conductivity of soil saturated paste (ECe) decreased by 79–88% in the topsoil layer (0–8 cm) in both soils cultivated with E. stagnina and in bare soil. In contrast, in the deepest soil layer (18–25 cm), the ECe decreased more in soil cultivated with E. stagnina (41–83%) than in bare soil (32–58%). Salt stocks, which were initially similar in the columns, decreased more in soil cultivated with E. stagnina (65–87%) than in bare soil (34–45%). The simulation model Hydrus-1D was used to predict the general trends in soil salinity and compare them to measurements. Both the measurements and model predictions highlighted the contrast between the two cropping seasons: soil salinity decreased slowly during the first cropping season and rapidly during the second cropping season following the intercropping season. Our results also suggested that planting E. stagnina was a promising option for controlling the salinity of saline-sodic Vertisols.


Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 89
Author(s):  
Andriani Galani ◽  
Daniel Mamais ◽  
Constantinos Noutsopoulos ◽  
Petra Anastopoulou ◽  
Alexia Varouxaki

Hexavalent chromium is a carcinogenic heavy metal that needs to be removed effectively from polluted aquifers in order to protect public health and the environment. This work aims to evaluate the reduction of Cr(VI) to Cr(III) in a contaminated aquifer through the stimulation of indigenous microbial communities with the addition of reductive agents. Soil-column experiments were conducted in the absence of oxygen and at hexavalent chromium (Cr(VI)) groundwater concentrations in the 1000–2000 μg/L range. Two carbon sources (molasses and EVO) and one iron electron donor (FeSO4·7H2O) were used as ways to stimulate the metabolism and proliferation of Cr(VI) reducing bacteria in-situ. The obtained results indicate that microbial anaerobic respiration and electron transfer can be fundamental to alleviate polluted groundwater from hazardous Cr(VI). The addition of organic electron donors increased significantly Cr(VI) reduction rates in comparison to natural soil attenuation rates. Furthermore, a combination of organic carbon and iron electron donors led to a longer life span of the remediation process and thus increased total Cr(VI) removal. This is the first study to investigate biotic and abiotic Cr(VI) removal by conducting experiments with natural soil and by applying biostimulation to modify the natural existing microbial communities.


Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 59
Author(s):  
Haohao Cui ◽  
Guanghui Zhang ◽  
Jinzhe Wang ◽  
Qian Wang ◽  
Xujuan Lang

The natural vegetation in arid areas of northwest China is strongly dependent on the availability of groundwater. Significantly, capillary water plays an essential role in regulating the ecological groundwater level in the multilayered structure of the vadose zone. The soil-column test and field survey in the lower reaches of the Shiyang River Basin were conducted to investigate the influence of the multi-layered structure of the vadose zone on maintaining the ecological effect of groundwater. Based on the field survey, the results show that the depth of groundwater is 3.0 m, and the rising height of capillary water is 140 cm. In the soil-column test, the height of the wetting front of the column was 125 cm. During the water releasing test, the water held by the vadose zone was 182.54 mm, which would have maintained Haloxylon’s survival in a growing season. Therefore, the multi-layered structure of the vadose zone extends the ecological groundwater depth and consequently enhances the ecological function of groundwater. Importantly, with a lower groundwater level, the clay soil layer within the rising height range of the original capillary water would hold more water and maintain a higher water content for a certain period to supply surface vegetation.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2507
Author(s):  
Ben A. Rigby ◽  
Niloufar Nasrollahi ◽  
Corinne Celestina ◽  
James R. Hunt ◽  
John A. Kirkegaard ◽  
...  

Immobilisation of fertiliser nitrogen (N) by soil microorganisms can reduce N availability to crops, decreasing growth and yield. To date, few studies have focussed on the effect of different plant species on immobilisation of fertiliser N. Canola (Brassica napus) is known to influence the soil microbiome and increase mineral N in soil for future crops compared with cereals. We tested the hypothesis that canola can reduce immobilisation of fertiliser N by influencing the composition of the rhizosphere microbiome. To investigate this, we conducted a glasshouse soil column experiment comparing N fertiliser uptake between canola and wheat (Triticum aestivium) and partitioning of fertiliser N between plants and microorganisms. Plants were grown in soil to which high C:N ratio wheat residues and 15N-labelled urea fertiliser were applied. There was no difference between wheat and canola in fertiliser N uptake despite differences in fungal community composition and the carbon metabolising enzyme alpha-glucosidase in the rhizosphere. Canola obtained more soil-derived N than wheat. There was no significant difference in the rhizosphere bacterial communities present between wheat and canola and unplanted controls. Our results highlight the capacity of canola to increase mineralisation of soil N compared with wheat although the study could not describe the microbial community which facilitated this increase.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Mikhail Vladimirovich Glagolev

This work represents the materials of the report prepared at the suggestion of N. S. Panikov in 19851986, when the author was a third-year student at the Faculty of Soil Science, M.V. Lomonosov Moscow State University. The report contains definitions of direct and inverse problems. A classification of inverse problems and several examples of such problems encountered in soil science and biological kinetics are given. The question of the ill-posed inverse problems is touched, and the main methods of their solution are briefly listed. The problem of identifying a gas source in a soil column by the layer-by-layer balance method (based on measurements of the dynamics of the concentration field) is considered in detail. This task is shown as a computer program, and for others, useful links to programs published in the literature are given.


Author(s):  
Erik Joseph Lester Larson ◽  
Luke Schiferl ◽  
Roisin Commane ◽  
J William Munger ◽  
Anna T Trugman ◽  
...  

Abstract An estimated 1700 Pg of carbon is frozen in the Arctic permafrost and the fate of this carbon is unclear because of the complex interaction of biophysical, ecological and biogeochemical processes that govern the Arctic carbon budget. Two key processes determining the region’s long-term carbon budget are: (i) carbon uptake through increased plant growth, and (ii) carbon release through increased heterotrophic respiration due to warmer soils. Previous predictions for how these two opposing carbon fluxes may change in the future have varied greatly, indicating that improved understanding of these processes and their feedbacks is critical for advancing our predictive ability for the fate of Arctic peatlands. In this study, we implement and analyze a vertically-resolved model of peatland soil carbon into a cohort-based terrestrial biosphere model to improve our understanding of how on-going changes in climate are altering the Arctic carbon budget. A key feature of the formulation is that accumulation of peat within the soil column modifies its texture, hydraulic conductivity, and thermal conductivity, which, in turn influences resulting rates of heterotrophic respiration within the soil column. Analysis of the model at three eddy covariance tower sites in the Alaskan tundra shows that the vertically-resolved soil column formulation accurately captures the zero-curtain phenomenon, in which the temperature of soil layers remain at or near 0 °C during fall freezeback due to the release of latent heat, is critical to capturing observed patterns of wintertime respiration. We find that significant declines in net ecosystem productivity (NEP) occur starting in 2013 and that these declines are driven by increased heterotrophic respiration arising from increased precipitation and warming. Sensitivity analyses indicate that the cumulative NEP over the decade responds strongly to the estimated soil carbon stock and more weakly to vegetation abundance at the beginning of the simulation.


Author(s):  
Vincent Gauci ◽  
Viviane Figueiredo ◽  
Nicola Gedney ◽  
Sunitha Rao Pangala ◽  
Tainá Stauffer ◽  
...  

Inundation-adapted trees were recently established as the dominant egress pathway for soil-produced methane (CH 4 ) in forested wetlands. This raises the possibility that CH 4 produced deep within the soil column can vent to the atmosphere via tree roots even when the water table (WT) is below the surface. If correct, this would challenge modelling efforts where inundation often defines the spatial extent of ecosystem CH 4 production and emission. Here, we examine CH 4 exchange on tree, soil and aquatic surfaces in forest experiencing a dynamic WT at three floodplain locations spanning the Amazon basin at four hydrologically distinct times from April 2017 to January 2018. Tree stem emissions were orders of magnitude larger than from soil or aquatic surface emissions and exhibited a strong relationship to WT depth below the surface (less than 0). We estimate that Amazon riparian floodplain margins with a WT < 0 contribute 2.2–3.6 Tg CH 4  yr −1 to the atmosphere in addition to inundated tree emissions of approximately 12.7–21.1 Tg CH 4  yr −1 . Applying our approach to all tropical wetland broad-leaf trees yields an estimated non-flooded floodplain tree flux of 6.4 Tg CH 4  yr −1 which, at 17% of the flooded tropical tree flux of approximately 37.1 Tg CH 4  yr −1 , demonstrates the importance of these ecosystems in extending the effective CH 4 emitting area beyond flooded lands. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 2)'.


Sign in / Sign up

Export Citation Format

Share Document