ventricular zone
Recently Published Documents


TOTAL DOCUMENTS

303
(FIVE YEARS 95)

H-INDEX

46
(FIVE YEARS 5)

2022 ◽  
Vol 7 (4) ◽  
pp. 275-280
Author(s):  
Mamata Mishra ◽  
Pankaj Seth

During aging, the decrease of cognitive ability is believed to be the cause of age related neuronal damage and reduced proliferation and differentiation of adult-born neural precursor cells. To modulate the synaptic plasticity and adult neurogenesis, it is of immense importance to enhance the potential of resident neural stem cells of hippocampus and sub ventricular zone (SVZ). The necessity to restore brain functions is enormous in the neurodegenerative disease like Alzheimer, Parkinson diseases, stress induced cognitive dysfunction, depression and age-associated and HIV-associated dementia. As a pioneer transmitter, Gamma Amino Butaric Acid (GABA) influences the activity dependent adult neurogenesis and excites immature neurons in adult hippocampus. GABA holds the key for making adult immature neuron to mature functional neuron hence plays critical role in adult neurogenesis.This review aims to discuss about the spatio-temporal expression of various subunit of GABA-A receptor and how these subunits intimately modulates the synaptic plasticity. During developmental period GABAergic neurons mature at early stages and regulate overall neural activity much before the activity of glutamate. Not only during development but also during adult neurogenesis GABA plays a significant role in neurite outgrowth and establishing well network.


2022 ◽  
Vol 23 (2) ◽  
pp. 834
Author(s):  
Chigusa Shimizu-Okabe ◽  
Shiori Kobayashi ◽  
Jeongtae Kim ◽  
Yoshinori Kosaka ◽  
Masanobu Sunagawa ◽  
...  

Gamma-aminobutyric acid (GABA) and glycine act as inhibitory neurotransmitters. Three types of inhibitory neurons and terminals, GABAergic, GABA/glycine coreleasing, and glycinergic, are orchestrated in the spinal cord neural circuits and play critical roles in regulating pain, locomotive movement, and respiratory rhythms. In this study, we first describe GABAergic and glycinergic transmission and inhibitory networks, consisting of three types of terminals in the mature mouse spinal cord. Second, we describe the developmental formation of GABAergic and glycinergic networks, with a specific focus on the differentiation of neurons, formation of synapses, maturation of removal systems, and changes in their action. GABAergic and glycinergic neurons are derived from the same domains of the ventricular zone. Initially, GABAergic neurons are differentiated, and their axons form synapses. Some of these neurons remain GABAergic in lamina I and II. Many GABAergic neurons convert to a coreleasing state. The coreleasing neurons and terminals remain in the dorsal horn, whereas many ultimately become glycinergic in the ventral horn. During the development of terminals and the transformation from radial glia to astrocytes, GABA and glycine receptor subunit compositions markedly change, removal systems mature, and GABAergic and glycinergic action shifts from excitatory to inhibitory.


Author(s):  
Chigusa Shimizu-Okabe ◽  
Shiori Kobayashi ◽  
Jeongtae Kim ◽  
Yoshinori Kosaka ◽  
Masanobu Sunagawa ◽  
...  

Gamma-aminobutyric acid (GABA) and glycine act as inhibitory neurotransmitters. Three types of inhibitory neurons and terminals, GABAergic, GABA/glycine co-releasing, and glycinergic, are orchestrated in the spinal cord neural circuits and play key roles in the regulation of pain, locomotive movement, and respiratory rhythms. Herein, we first describe GABAergic and glycinergic transmission and inhibitory networks, which consist of three types of terminals, in the mature mouse spinal cord. Second, we describe the developmental formation of GABAergic and glycinergic networks, with specific focus on the differentiation of neurons, formation of synapses, maturation of removal systems, and changes in their action. GABAergic and glycinergic neurons are derived from the same domains of the ventricular zone. Initially, GABAergic neurons are differentiated and their axons form synapses. Some of these neurons remain GABAergic in lamina I and II. Many of GABAergic neurons convert to co-releasing state. The co-releasing neurons and terminals remain in the dorsal horn, whereas many of co-releasing ones ultimately become glycinergic in the ventral horn. During the development of terminals and the transformation from radial glia to astrocytes, GABA and glycine receptor subunit compositions markedly change, removal systems mature, and GABAergic and glycinergic action shifts from excitatory to inhibitory.


2021 ◽  
Vol 118 (51) ◽  
pp. e2024795118
Author(s):  
Athéna R. Ypsilanti ◽  
Kartik Pattabiraman ◽  
Rinaldo Catta-Preta ◽  
Olga Golonzhka ◽  
Susan Lindtner ◽  
...  

We uncovered a transcription factor (TF) network that regulates cortical regional patterning in radial glial stem cells. Screening the expression of hundreds of TFs in the developing mouse cortex identified 38 TFs that are expressed in gradients in the ventricular zone (VZ). We tested whether their cortical expression was altered in mutant mice with known patterning defects (Emx2, Nr2f1, and Pax6), which enabled us to define a cortical regionalization TF network (CRTFN). To identify genomic programming underlying this network, we performed TF ChIP-seq and chromatin-looping conformation to identify enhancer–gene interactions. To map enhancers involved in regional patterning of cortical progenitors, we performed assays for epigenomic marks and DNA accessibility in VZ cells purified from wild-type and patterning mutant mice. This integrated approach has identified a CRTFN and VZ enhancers involved in cortical regional patterning in the mouse.


2021 ◽  
pp. 23-43
Author(s):  
Gian Giacomo Consalez ◽  
Marta Florio ◽  
Luca Massimino ◽  
Filippo Casoni ◽  
Laura Croci

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Ayodamola Otun ◽  
Diego M. Morales ◽  
Maria Garcia-Bonilla ◽  
Seth Goldberg ◽  
Leandro Castaneyra-Ruiz ◽  
...  

Abstract Background Intraventricular hemorrhage (IVH) and post-hemorrhagic hydrocephalus (PHH) have a complex pathophysiology involving inflammatory response, ventricular zone and cell–cell junction disruption, and choroid-plexus (ChP) hypersecretion. Increased cerebrospinal fluid (CSF) cytokines, extracellular matrix proteins, and blood metabolites have been noted in IVH/PHH, but osmolality and electrolyte disturbances have not been evaluated in human infants with these conditions. We hypothesized that CSF total protein, osmolality, electrolytes, and immune cells increase in PHH. Methods CSF samples were obtained from lumbar punctures of control infants and infants with IVH prior to the development of PHH and any neurosurgical intervention. Osmolality, total protein, and electrolytes were measured in 52 infants (18 controls, 10 low grade (LG) IVH, 13 high grade (HG) IVH, and 11 PHH). Serum electrolyte concentrations, and CSF and serum cell counts within 1-day of clinical sampling were obtained from clinical charts. Frontal occipital horn ratio (FOR) was measured for estimating the degree of ventriculomegaly. Dunn or Tukey’s post-test ANOVA analysis were used for pair-wise comparisons. Results CSF osmolality, sodium, potassium, and chloride were elevated in PHH compared to control (p = 0.012 − < 0.0001), LGIVH (p = 0.023 − < 0.0001), and HGIVH (p = 0.015 − 0.0003), while magnesium and calcium levels were higher compared to control (p = 0.031) and LGIVH (p = 0.041). CSF total protein was higher in both HGIVH and PHH compared to control (p = 0.0009 and 0.0006 respectively) and LGIVH (p = 0.034 and 0.028 respectively). These differences were not reflected in serum electrolyte concentrations nor calculated osmolality across the groups. However, quantitatively, CSF sodium and chloride contributed 86% of CSF osmolality change between control and PHH; and CSF osmolality positively correlated with CSF sodium (r, p = 0.55,0.0015), potassium (r, p = 0.51,0.0041), chloride (r, p = 0.60,0.0004), but not total protein across the entire patient cohort. CSF total cells (p = 0.012), total nucleated cells (p = 0.0005), and percent monocyte (p = 0.016) were elevated in PHH compared to control. Serum white blood cell count increased in PHH compared to control (p = 0.042) but there were no differences in serum cell differential across groups. CSF total nucleated cells also positively correlated with CSF osmolality, sodium, potassium, and total protein (p = 0.025 − 0.0008) in the whole cohort. Conclusions CSF osmolality increased in PHH, largely driven by electrolyte changes rather than protein levels. However, serum electrolytes levels were unchanged across groups. CSF osmolality and electrolyte changes were correlated with CSF total nucleated cells which were also increased in PHH, further suggesting PHH is a neuro-inflammatory condition.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Maximilian Middelkamp ◽  
Lisa Ruck ◽  
Christoph Krisp ◽  
Piotr Sumisławski ◽  
Behnam Mohammadi ◽  
...  

AbstractLIN28A overexpression has been identified in malignant brain tumors called embryonal tumors with multilayered rosettes (ETMR) but its specific role during brain development remains largely unknown. Radial glia cells of the ventricular zone (VZ) are proposed as a cell of origin for ETMR. We asked whether an overexpression of LIN28A in such cells might affect brain development or result in the formation of brain tumors.Constitutive overexpression of LIN28A in hGFAP-cre::lsl-Lin28A (GL) mice led to a transient increase of proliferation in the cortical VZ at embryonic stages but no postnatal brain tumor formation. Postnatally, GL mice displayed a pyramidal cell layer dispersion of the hippocampus and altered spine and dendrite morphology, including reduced dendritic spine densities in the hippocampus and cortex. GL mice displayed hyperkinetic activity and differential quantitative MS-based proteomics revealed altered time dependent molecular functions regarding mRNA processing and spine morphogenesis. Phosphoproteomic analyses indicated a downregulation of mTOR pathway modulated proteins such as Map1b being involved in microtubule dynamics.In conclusion, we show that Lin28A overexpression transiently increases proliferation of neural precursor cells but it is not sufficient to drive brain tumors in vivo. In contrast, Lin28A impacts on protein abundancy patterns related to spine morphogenesis and phosphorylation levels of proteins involved in microtubule dynamics, resulting in decreased spine densities of neurons in the hippocampus and cortex as well as in altered behavior. Our work provides new insights into the role of LIN28A for neuronal morphogenesis and development and may reveal future targets for treatment of ETMR patients.


2021 ◽  
Author(s):  
Lingzhen Song ◽  
Shanting Zhao ◽  
Michael Frotscher ◽  
Xuejun Chai

Abstract The adult neocortex is a six-layered structure, consisting of nearly continuous layers of neurons that are generated with large temporal diversity. During development, cortical neurons originating from the ventricular zone migrate towards the Reelin-containing marginal zone in an inside-out arrangement. Focal adhesion kinase (FAK), one tyrosine kinase localizing to focal adhesions, has been shown to be activated by Src, an important downstream molecule of Reelin signaling, at tyrosine 925 (Y925). Up to date, the precise molecular mechanisms of FAK and its phosphorylation at Y925 during neuronal migration are still unclear. Combining in utero electroporation with immunohistochemistry and live imaging, we examined the function of FAK in regulating neuronal migration. We show that phosphorylated FAK is colocalized with Reelin positive cells in the developing neocortex and hippocampus. Phosphorylation of FAK at Y925 is significantly reduced in reeler mice. Overexpression and dephosphorylation of FAK impair locomotion and translocation, resulting in migration inhibition and dislocation of both late-born and early-born neurons. These migration defects are highly correlated to the function of FAK in regulating cofilin phosphorylation and N-Cadherin expression, both are involved in Reelin signaling pathway. Thus, phosphorylation of focal adhesion kinase at Y925 is crucial for both glia-dependent and independent neuronal migration.


2021 ◽  
Author(s):  
◽  
Timothy John Sargeant

<p>Opiate drugs, such as codeine, morphine and heroin are powerful analgesics and drugs of abuse. The unborn child is invariably exposed to opiate drugs as a consequence of maternal use. Studies that have investigated the impact of opiate drugs demonstrated opioid system expression in proliferating regions of the developing brain, as well as on proliferative astroglia taken from the developing central nervous system. The effects of opiates on astroglial proliferation (largely mediated by the mu opioid receptor) are predominantly inhibitory, but are extremely context dependent. This context dependency exists because of the complexity resident within the opioid signalling system. However, since this previous research was conducted, there has been impressive progress made in the field of developmental neurobiology with the demonstration that cells of astrocytic lineage are responsible for the generation of the central nervous system. It was therefore the aim of the current research project to investigate the developmental impact of opiate exposure in the context of the foetal mouse cerebral cortex. This aim was divided into 3 separate aims that comprised of; determining the cellular localisation of the mu opioid receptor, the effects of opiate exposure on cortical progenitor cells, and to determine the effect of opiate exposure on the development of the cerebral cortex itself. The mu opioid receptor was expressed on proliferative radial glia of both the embryonic day 15.5 (neurogenic) and embryonic day 18.5 (gliogenic) ventricular zone of the dorsal forebrain. Interestingly and significantly, the mu opioid receptor-positive glia observed in the embryonic day 18.5 mouse forebrain were also observed at a comparable developmental stage in the foetal human forebrain. Morphine exposure slowed down G2 phase of the cell cycle at embryonic day 15.5 in the neurogenic murine cortical ventricular zone. This opiate-induced slowing in cell cycle progression was shown not to impact on proliferation in the ventricular zone, although future research should address whether this perturbation altered differentiation or developmental maturation of the radial glia. Morphine exposure throughout corticogenesis decreased levels of doublecortin expression (a migratory neuronal marker) at the end of gestation. Postnatally, mice exposed to morphine during corticogenesis also showed decreased numbers of neurons in layer V of the cerebral cortex. Collectively, this thesis presents the first evidence that shows morphine affects cortical progenitor cells in vivo. This research supports the possibility that the opioid system plays an endogenous role in corticogenesis. The clinical significance is morphine has the potential to perturb normal development of the cerebral cortex.</p>


Sign in / Sign up

Export Citation Format

Share Document