mlpg method
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 22)

H-INDEX

22
(FIVE YEARS 2)

Author(s):  
Ali Mohtashami ◽  
Seyed Arman Hashemi Monfared ◽  
Gholamreza Azizyan ◽  
Abolfazl Akbarpour

Abstract The complicated behavior of groundwater system in an arid aquifer is generally studied by solving the governing equations using either analytical or numerical methods. In this regard, analytical methods are just for some aquifers with regular boundaries. Numerical methods used for this aim are finite difference (FDM) and finite element methods (FEM) which are engaged for some simple aquifers. Using them in the complex cases with irregular boundaries has some shortcomings, depended on meshes. In this study, meshless local Petrov-Galerkin (MLPG) method based on the moving kriging (MK) approximation function is used to simulate groundwater flow in steady state over three aquifers, two standard and a real field aquifer. Moving kriging function known as new function which reduces the uncertain parameter. For the first aquifer, a simple rectangular aquifer, MLPG-MK indicates good agreement with analytical solutions. In the second one, aquifer conditions get more complicated. However, MLPG-MK reveals results more accurate than FDM. RMSE for MLPG-MK and FDM is 0.066 and 0.322 m respectively. In the third aquifer, Birjand unconfined aquifer located in Iran is investigated. In this aquifer, there are 190 extraction wells. The geometry of the aquifer is irregular as well. With this challenging issues, MLPG-MK again shows satisfactory accuracy. As the RMSE for MLPG-MK and FDM are 0.483 m and 0.566 m. therefore, planning for this aquifer based on the MLPG-MK is closer to reality.


2021 ◽  
Author(s):  
Krishna Singh ◽  
Abhishek Kumar Singh
Keyword(s):  

Author(s):  
Abhishek Kumar Singh ◽  
Krishna Mohan Singh

Abstract In recent years, meshless local Petrov-Galerkin (MLPG) method has emerged as the promising choice for solving variety of scientific and engineering problems. MLPG formulation leads to a non-symmetric system of algebraic equations. Iterative methods (such as GMRES and BiCGSTAB methods) are more competent than the direct solvers for solving a general linear system of larger size (order of millions or billions). This paper presents the use of GMRES solver with MLPG method for the very first time. The restarted version of the GMRES method is applied in connection with the interpolating MLPG method, to solve steady-state heat conduction in three-dimensional regular geometry. The performance of GMRES solver (with and without preconditioner) has been compared with the preconditioned BiCGSTAB method in terms of computation time and convergence behaviour. Jacobi and successive over-relaxation methods have been used as preconditioners in both the solvers. The results show that GMRES solver takes about 18 to 20% less CPU time than the BiCGSTAB solver along with better convergence behaviour.


Sign in / Sign up

Export Citation Format

Share Document