lower thermosphere
Recently Published Documents


TOTAL DOCUMENTS

1378
(FIVE YEARS 270)

H-INDEX

62
(FIVE YEARS 4)

Author(s):  
A. Berera ◽  
D. J. Brener

For many decades, vertical winds have been observed at high altitudes of the Earth’s atmosphere, in the mesosphere and thermosphere layers. These observations have been used with a simple one-dimensional model to make estimates of possible altitude climbs by biologically sized particles deeper into the thermosphere, in the rare occurrence where such a particle has been propelled to these altitudes. A particle transport mechanism is suggested from the literature on auroral arcs, indicating that an altitude of 120 km could be reached by a nanometre-sized particle, which is higher than the measured 77 km limit on the biosphere. Vertical wind observations in the upper mesophere and lower thermosphere are challenging to make and so we suggest that particles could reach altitudes greater than 120 km, depending on the magnitude of the vertical wind. Applications of the larger vertical winds in the upper atmosphere to astrobiology and climate science are explored.


2021 ◽  
Vol 7 (4) ◽  
pp. 79-84
Author(s):  
Maksim Tolstikov ◽  
Konstantin Ratovsky ◽  
Irina Medvedeva ◽  
Denis Khabituev

We present the results of a comprehensive study of the manifestation of wave activity with periods of internal gravity waves (IGW) in various regions of the atmosphere: in the stratosphere, upper mesosphere, and in the F2-region of the ionosphere. The study is based on radiophysical and spectrometric measurements made with tools of the Institute of Solar-Terrestrial Physics (ISTP) SB RAS and the Era-Interim reanalysis data. The correlation coefficient with time shift between ionospheric and stratospheric activity for the annual interval varies in the range from 0.45 to 0.54, and for the 27-day interval it reaches the levels 0.4–0.8 in seventy percent of the cases. Thirty percent of correlation coefficients less than 0.4 can be explained by the influence of neutral wind, geomagnetic activity, and non-stratospheric IGW sources. Comparison between stratospheric activity and variations in characteristics of traveling ionospheric disturbances (TID) has shown that a ~15 day shift in stratospheric activity results in a fairly high correlation between stratospheric activity and disturbance of IGW characteristics (~0.6). The delay of about 15 days can be attributed to the delay in the temperature variations at heights of the lower thermosphere relative to the temperature variations at the altitude pressure level of 1 hPa. Comparative analysis of variations in mesospheric and ionospheric activity has revealed time intervals when their behavior is consistent.


2021 ◽  
Vol 21 (24) ◽  
pp. 18433-18464
Author(s):  
Michael Höpfner ◽  
Oliver Kirner ◽  
Gerald Wetzel ◽  
Björn-Martin Sinnhuber ◽  
Florian Haenel ◽  
...  

Abstract. We present the first observational dataset of vertically resolved global stratospheric BrONO2 distributions from July 2002 until April 2012 and compare them to results of the atmospheric chemical climate model ECHAM/MESSy Atmospheric Chemistry (EMAC). The retrieved distributions are based on space-borne measurements of infrared limb-emission spectra recorded by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat. The derived vertical profiles of BrONO2 volume mixing ratios represent 10∘ latitude bins and 3 d means, separated into sunlit observations and observations in the dark. The estimated uncertainties are around 1–4 pptv, caused by spectral noise for single profiles as well as for further parameter and systematic errors which may not improve by averaging. Vertical resolutions range from 3 to 8 km between 15 and 35 km altitude. All leading modes of spatial and temporal variability of stratospheric BrONO2 in the observations are well replicated by the model simulations: the large diurnal variability, the low values during polar winter as well as the maximum values at mid and high latitudes during summer. Three major differences between observations and model results are observed: (1) a model underestimation of enhanced BrONO2 in the polar winter stratosphere above about 30 km of up to 15 pptv, (2) up to 8 pptv higher modelled values than observed globally in the lower stratosphere up to 25 km, most obvious during night, and (3) up to 5 pptv lower modelled concentrations at tropical latitudes between 27 and 32 km during sunlit conditions. (1) is explained by the model missing enhanced NOx produced in the mesosphere and lower thermosphere subsiding at high latitudes in winter. This is the first time that observational evidence for enhancement of BrONO2 caused by mesospheric NOx production is reported. The other major inconsistencies (2, 3) between EMAC model results and observations are studied by sensitivity runs with a 1D model. These tentatively hint at a model underestimation of heterogeneous loss of BrONO2 in the lower stratosphere, a simulated production of BrONO2 that is too low during the day as well as strongly underestimated BrONO2 volume mixing ratios when loss via reaction with O(3P) is considered in addition to photolysis. However, considering the uncertainty ranges of model parameters and of measurements, an unambiguous identification of the causes of the differences remains difficult. The observations have also been used to derive the total stratospheric bromine content relative to years of stratospheric entry between 1997 and 2007. With an average value of 21.2±1.4 pptv of Bry at mid latitudes where the modelled adjustment from BrONO2 to Bry is smallest, the MIPAS data agree with estimates of Bry derived from observations of BrO as well as from MIPAS-Balloon measurements of BrONO2.


2021 ◽  
Vol 7 (4) ◽  
pp. 84-90
Author(s):  
Maksim Tolstikov ◽  
Konstantin Ratovsky ◽  
Irina Medvedeva ◽  
Denis Khabituev

We present the results of a comprehensive study of the manifestation of wave activity with periods of internal gravity waves (IGW) in various regions of the atmosphere: in the stratosphere, upper mesosphere, and in the F2-region of the ionosphere. The study is based on radiophysical and spectrometric measurements made with tools of the Institute of Solar-Terrestrial Physics (ISTP) SB RAS and the Era-Interim reanalysis data. The correlation coefficient with time shift between ionospheric and stratospheric activity for the annual interval varies in the range from 0.45 to 0.54, and for the 27-day interval it reaches the levels 0.4–0.8 in seventy percent of the cases. Thirty percent of correlation coefficients less than 0.4 can be explained by the influence of neutral wind, geomagnetic activity, and non-stratospheric IGW sources. Comparison between stratospheric activity and variations in characteristics of traveling ionospheric disturbances (TID) has shown that a ~15 day shift in stratospheric activity results in a fairly high correlation between stratospheric activity and disturbance of IGW characteristics (~0.6). The delay of about 15 days can be attributed to the delay in the temperature variations at heights of the lower thermosphere relative to the temperature variations at the altitude pressure level of 1 hPa. Comparative analysis of variations in mesospheric and ionospheric activity has revealed time intervals when their behavior is consistent.


2021 ◽  
Author(s):  
Benedikt Gast ◽  
Ales Kuchar ◽  
Gunter Stober ◽  
Christoph Jacobi ◽  
Dimitry Pokhotelov ◽  
...  

<p class="western" align="justify"><span lang="en-GB">Previous studies that analysed the mesosphere and lower thermosphere (MLT) dynamics during sudden stratospheric warmings (SSWs) were limited only to particular SSWs or focused on a particular station representative only for some regions. Here we describe a comprehensive study of the average meteorological conditions during SSWs with a special focus on the general contribution of planetary (PW) and gravity (GW) waves as primary coupling mechanisms between lower and upper atmosphere. The average meteorological conditions in the MLT during SSWs were analyzed using a superposed epoch analysis (Denton et al., 2019) of meteor radar measurements for stations in the northern (NH: Collm, Kiruna, Sodankyla, CMOR) and the southern hemisphere (SH: Rio Grande, Davis, Rothera) for the altitude range of 80–100 km Using the adaptive spectral filtering method (Stober et al., 2021), we study in detail PW and GW characteristics in addition to measured zonal and meridional wind components in a time period from 2000 to 2020.</span></p> <p class="western" align="justify"><span lang="en-GB">In the NH the zonal wind is typically decreasing from around two weeks before the SSW onset, corresponding to an increased PW activity. Around the SSW onset, latitudinal differences in the zonal wind component as well as the PW activity can be seen. In the weeks before the SSW onset, the stations in the NH also show an increased level of GW kinetic energy. The meridional wind at the NH stations fluctuates with a periodicity of about 10 days before and around the onset. In contrast to previous studies (e.g. Yasui et al., 2016), the measurements in the SH are consistent with the inter-hemispheric coupling hypothesis. The expected downward shift of GW drag (Körnich and Becker, 2010) was reproduced by a downward travelling layer of enhanced GW activity at Davis and Rio Grande. Finally, the role of the terdiurnal tide in the GW energy composite is considered.</span></p>


2021 ◽  
Author(s):  
Patrick Hupe ◽  

<p>The Atmospheric dynamics Research InfraStructure in Europe (ARISE) project has integrated different meteorological and geophysical station networks and technologies providing observations from the ground to the lower thermosphere. A particular emphasis is on improving observations in the middle atmosphere, as this is a crucial region affecting tropospheric weather and climate. Besides supporting innovative prototypes of mobile lidars and microwave radiometers, ARISE utilized the global infrasound network developed for the Comprehensive Nuclear-Test-Ban Treaty (CTBT) verification, the lidar Network for the Detection of Atmospheric Composition Change (NDACC), meteor radars, wind radiometers, ionospheric sounders and satellites.</p> <p>This presentation highlights the objectives and results as well as perspectives of the first two project phases – one within the European Union’s 7th Framework Programme and the second within the Horizon 2020 programme. ARISE has facilitated multi-instrument stations and collocated measurement campaigns at different latitudes in Europe, including the observatories ALOMAR in northern Norway, OHP in southern France and Maïdo on Reunion Island (France), as well as the infrasound station in southern Germany. One ARISE study, for instance, analyzed different ground-based and space-borne observation technologies, revealing systematic biases for temperature and wind in both analysis and reanalysis models. Such biases are critical to the CTBT verification when validating infrasound signal detections by propagation modelling. Also, the potential of infrasound to be assimilated in weather or climate models was proposed, as infrasound can be used to probe winds and cross-wind effects in the middle atmosphere. Meanwhile, offline assimilation tests relying on infrasound data from ground-truth explosion events and wind data of ECMWF’s ERA5 model have been conducted. Overall, the interest of ARISE is to provide atmospheric data products and services for both scientific and civilian-security applications, including the monitoring of extreme events that have an atmospheric signature, such as meteors, thunderstorms or volcanic eruptions. For early warnings on volcanic eruptions, the Volcano Information System (VIS) was proposed as an ARISE product in cooperation with the CTBT organization and the Toulouse Volcanic Ash Advisory Center (VAAC).</p>


2021 ◽  
Vol 19 ◽  
pp. 185-193
Author(s):  
Christoph Jacobi ◽  
Friederike Lilienthal ◽  
Dmitry Korotyshkin ◽  
Evgeny Merzlyakov ◽  
Gunter Stober

Abstract. Observations of upper mesosphere/lower thermosphere (MLT) wind have been performed at Collm (51.3∘ N, 13.0∘ E) and Kazan (56∘ N, 49∘ E), using two SKiYMET all-sky meteor radars with similar configuration. Daily vertical profiles of mean winds and tidal amplitudes have been constructed from hourly horizontal winds. We analyse the response of mean winds and tidal amplitudes to geomagnetic disturbances. To this end, we compare winds and amplitudes for very quiet (Ap ≤ 5) and unsettled/disturbed (Ap ≥ 20) geomagnetic conditions. Zonal winds in both the mesosphere and lower thermosphere are weaker during disturbed conditions for both summer and winter. The summer equatorward meridional wind jet is weaker for disturbed geomagnetic conditions. Tendencies for geomagnetic effects on mean winds over Collm and Kazan qualitatively agree during most of the year. For the diurnal tide, amplitudes in summer are smaller in the mesosphere and greater in the lower thermosphere, but no clear tendency is seen for winter. Semidiurnal tidal amplitudes increase during geomagnetic active days in summer and winter. Terdiurnal amplitudes are slightly reduced in the mesosphere during disturbed days, but no clear effect is visible for the lower thermosphere. Overall, while there is a noticeable effect of geomagnetic variability on the mean wind, the effect on tidal amplitudes, except for the semidiurnal tide, is relatively small and partly different over Collm and Kazan.


2021 ◽  
Author(s):  
Kanykei Kandieva ◽  
Christoph Jacobi ◽  
Khalil Karami ◽  
Alexander Pogoreltsev ◽  
Evgeny Merzlyakov ◽  
...  

<p class="western" align="left">Radar observations from two SKiYMET radars at Collm (51°N, 13°E) and Kazan (56°N, 49°E) during 2016-2017 are used to investigate the longitudinal variability of the mesosphere/lower thermosphere (MLT) wind regime over western and eastern Europe. Both of the meteor radars have similar setups and apply the same analysis procedures to correctly compare MLT parameters and validate the simulated winds. The radar observations confirm the established seasonal variability of the wind distribution, but this distribution is not identical for the two stations. The results show good qualitative agreement with global circulations model predictions by the Middle and Upper Atmosphere Model (MUAM) and the Upper Atmosphere ICOsahedral Non-hydrostatic model (UA-ICON). The MUAM and UA-ICON models well reproduce the main dynamical features, namely the vertical and temporal distributions of the winds observed throughout the year. However, there are also some differences in the longitudinal wind variability of the models and radar observations. Numerical experiments with modified parameterization settings have also been carried out to study the response of the MLT wind circulation to the gravity waves originating from the lower atmosphere. The MUAM model results show that a decrease/increase in the gravity wave intensity at the lower atmosphere leads to an increase/decrease of the mesospheric zonal wind jet extension and the zonal wind reversal.</p>


2021 ◽  
Author(s):  
Ales Kuchar ◽  
Gunter Stober ◽  
Christoph Jacobi ◽  
Dimitry Pokhotelov ◽  
Huxin Liu ◽  
...  

<p class="western">Several studies (Banerjee et al. (2020) and before that Sun et al. (2014)) found a trend reversal between winter and summer circulation in the southern hemisphere around 2000 in the middle atmosphere. One may argue that the negative trend after 2000 is due to the CO<sub>2</sub>-induced change in stratospheric dynamics. However, Ramesh et al. (2020), using the newest WACCM6 simulation and a multiple linear regression model, confirmed that the negative trend in the stratosphere after 2000 can be attributed to ozone recovery. Here we investigate how stratospheric trends relate to trends in the mesosphere and lower thermosphere (MLT) dynamics. Using the adaptive spectral filtering (ASF) method (Stober et al., 2021), we study long-term changes in mesospheric wind and planetary and gravity wave estimates<span lang="en-GB"> of meteor radar stations in the northern (NH: Collm, Kiruna, Sodankyla, CM</span><span lang="en-GB">OR</span><span lang="en-GB">) and southern (SH: Rio Grande, Davis, Rothera) hemisphere, respectively, for the altitude range of 80–100 km. </span>Linear trends have been estimated (from monthly means calculated from the preprocessed original data using ASF) by the Theil–Sen estimator (Theil, 1950; Sen, 1968). The robustness of our fitting method is assessed in terms of spurious trends due to, e.g., high autocorrelation of relatively short time series. The long-term changes are validated in two whole-atmosphere models, namely, GAIA and WACCMX-SD (both nudged in the stratosphere). While both models reveal issues reproducing basic climatology in the mesosphere, GAIA fairly reproduces the trends captured by the meteor radars. Finally, we conclude that the ozone recovery effects in the SH stratosphere influence the dynamics in MLT via gravity wave coupling.</p>


Sign in / Sign up

Export Citation Format

Share Document