surface ocean
Recently Published Documents


TOTAL DOCUMENTS

902
(FIVE YEARS 284)

H-INDEX

77
(FIVE YEARS 12)

2022 ◽  
Vol 14 (2) ◽  
pp. 332
Author(s):  
Mohammed Abdul Athick AS ◽  
Shih-Yu Lee

This research investigates the applicability of combining spatial filter’s algorithm to extract surface ocean current. Accordingly, the raster filters were tested on 80–13,505 daily images to detect Kuroshio Current (KC) on weekly, seasonal, and climatological scales. The selected raster filters are convolution, Laplacian, north gradient, sharpening, min/max, histogram equalization, standard deviation, and natural break. In addition, conventional data set of sea surface currents, sea surface temperature (SST), sea surface height (SSH), and non-conventional data such as total heat flux, surface density (SSD), and salinity (SSS) were employed. Moreover, controversial data on ocean color are included because very few studies revealed that chlorophyll-α is a proxy to SST in the summer to extract KC. Interestingly, the performance of filters is uniform and thriving for seasonal and on a climatological scale only by combining the algorithms. In contrast, the typical scenario of identifying Kuroshio signatures using an individual filter and by designating a value spectrum is inapplicable for specific seasons and data set. Furthermore, the KC’s centerlines computed from SST, SSH, total heat flux, SSS, SSD, and chlorophyll-α correlate with sea surface currents. Deviations are observed in the various segments of Kuroshio’s centerline extracted from heat flux, chlorophyll-α, and SSS flowing across Tokara Strait from northeast Taiwan to the south of Japan.


Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 353
Author(s):  
Pierre-Marie Poulain ◽  
Luca Centurioni ◽  
Tamay Özgökmen

Instruments drifting at the ocean surface are quasi-Lagrangian, that is, they do not follow exactly the near-surface ocean currents. The currents measured by three commonly-used drifters (CARTHE, CODE and SVP) are compared in a wide range of sea state conditions (winds up to 17 m/s and significant wave height up to 3 m). Nearly collocated and simultaneous drifter measurements in the southwestern Mediterranean reveal that the CARTHE and CODE drifters measure the currents in the first meter below the surface in approximately the same way. When compared to SVP drogued at 15 m nominal depth, the CODE and CARTHE currents are essentially downwind (and down-wave), with a typical speed of 0.5–1% of the wind speed. However, there is a large scatter in velocity differences between CODE/CARTHE and SVP for all wind and sea state conditions encountered, principally due to vertical and horizontal shears not related to the wind. For the CODE drifter with wind speed larger than 10 m/s and significant wave height larger than 1 m, about 30–40% of this difference can be explained by Stokes drift.


2022 ◽  
Author(s):  
Laique Merlin Djeutchouang ◽  
Nicolette Chang ◽  
Luke Gregor ◽  
Marcello Vichi ◽  
Pedro Manuel Scheel Monteiro

Abstract. The Southern Ocean is a complex system yet is sparsely sampled in both space and time. These factors raise questions about the confidence in present sampling strategies and associated machine learning (ML) reconstructions. Previous studies have not yielded a clear understanding of the origin of uncertainties and biases for the reconstructions of the partial pressure of carbon dioxide (pCO2) at the surface ocean (pCO2ocean). Here, we examine these questions by investigating the sensitivity of pCO2ocean reconstruction uncertainties and biases to a series of semi-idealized observing system simulation experiments (OSSEs) that simulate spatio-temporal sampling scales of surface ocean pCO2 in ways that are comparable to ocean CO2 observing platforms (Ship, Waveglider, Carbon-float, Saildrone). These experiments sampled a high spatial resolution (±10 km) coupled physical and biogeochemical model (NEMO-PISCES) within a sub-domain representative of the Sub-Antarctic and Polar Frontal Zones in the Southern Ocean. The reconstructions were done using a two-member ensemble approach that consisted of two machine learning (ML) methods, (1) the feed-forward neural network and (2) the gradient boosting machines. With the baseline observations being from the simulated ships mimicking observations from the Surface Ocean CO2 Atlas (SOCAT), we applied to each of the scale-sampling simulation scenarios the two-member ensemble method ML2, to reconstruct the full sub-domain pCO2ocean and assess the reconstruction skill through a statistical comparison of reconstructed pCO2ocean and model domain mean. The analysis shows that uncertainties and biases for pCO2ocean reconstructions are very sensitive to both the spatial and temporal scales of pCO2 sampling in the model domain. The four key findings from our investigation are the following: (1) improving ML-based pCO2 reconstructions in the Southern Ocean requires simultaneous high resolution observations of the meridional and the seasonal cycle (< 3 days) of pCO2ocean; (2) Saildrones stand out as the optimal platforms to simultaneously address these requirements; (3) Wavegliders with hourly/daily resolution in pseudo-mooring mode improve on Carbon-floats (10-day period), which suggests that sampling aliases from the low temporal frequency have a greater negative impact on their uncertainties, biases and reconstruction means; and (4) the present summer seasonal sampling biases in SOCAT data in the Southern Ocean may be behind a significant winter bias in the reconstructed seasonal cycle of pCO2ocean.


Author(s):  
Manami Tozawa ◽  
Daiki Nomura ◽  
Shin−ichiro Nakaoka ◽  
Masaaki Kiuchi ◽  
Kaihe Yamazaki ◽  
...  

2021 ◽  
Author(s):  
Mario Uchimiya ◽  
William Schroer ◽  
Malin Olofsson ◽  
Arthur S. Edison ◽  
Mary Ann Moran

AbstractOrganic carbon transfer between surface ocean photosynthetic and heterotrophic microbes is a central but poorly understood process in the global carbon cycle. In a model community in which diatom extracellular release of organic molecules sustained growth of a co-cultured bacterium, we determined quantitative changes in the diatom endometabolome and the bacterial uptake transcriptome over two diel cycles. Of the nuclear magnetic resonance (NMR) peaks in the diatom endometabolites, 38% had diel patterns with noon or mid-afternoon maxima; the remaining either increased (36%) or decreased (26%) through time. Of the genes in the bacterial uptake transcriptome, 94% had a diel pattern with a noon maximum; the remaining decreased over time (6%). Eight diatom endometabolites identified with high confidence were matched to the bacterial genes mediating their utilization. Modeling of these coupled inventories with only diffusion-based phytoplankton extracellular release could not reproduce all the patterns. Addition of active release mechanisms for physiological balance and bacterial recognition significantly improved model performance. Estimates of phytoplankton extracellular release range from only a few percent to nearly half of annual net primary production. Improved understanding of the factors that influence metabolite release and consumption by surface ocean microbes will better constrain this globally significant carbon flux.


2021 ◽  
Vol 18 (24) ◽  
pp. 6435-6453
Author(s):  
Matthieu Bressac ◽  
Thibaut Wagener ◽  
Nathalie Leblond ◽  
Antonio Tovar-Sánchez ◽  
Céline Ridame ◽  
...  

Abstract. Mineral dust deposition is an important supply mechanism for trace elements in the low-latitude ocean. Our understanding of the controls of such inputs has been mostly built on laboratory and surface ocean studies. The lack of direct observations and the tendency to focus on near-surface waters prevent a comprehensive evaluation of the role of dust in oceanic biogeochemical cycles. In the frame of the PEACETIME project (ProcEss studies at the Air-sEa Interface after dust deposition in the MEditerranean sea), the responses of the aluminum (Al) and iron (Fe) cycles to two dust wet deposition events over the central and western Mediterranean Sea were investigated at a timescale of hours to days using a comprehensive dataset gathering dissolved and suspended particulate concentrations, along with sinking fluxes. Dissolved Al (dAl) removal was dominant over dAl released from dust. The Fe / Al ratio of suspended and sinking particles revealed that biogenic particles, and in particular diatoms, were key in accumulating and exporting Al relative to Fe. By combining these observations with published Al / Si ratios of diatoms, we show that adsorption onto biogenic particles, rather than active uptake, represents the main sink for dAl in Mediterranean waters. In contrast, systematic dissolved Fe (dFe) accumulation occurred in subsurface waters (∼ 100–1000 m), while dFe input from dust was only transient in the surface mixed layer. The rapid transfer of dust to depth, the Fe-binding ligand pool in excess to dFe in subsurface (while nearly saturated in surface), and low scavenging rates in this particle-poor depth horizon are all important drivers of this subsurface dFe enrichment. At the annual scale, this previously overlooked mechanism may represent an additional pathway of dFe supply for the surface ocean through diapycnal diffusion and vertical mixing. However, low subsurface dFe concentrations observed at the basin scale (


2021 ◽  
Vol 118 (51) ◽  
pp. e2102629118
Author(s):  
Maodian Liu ◽  
Wenjie Xiao ◽  
Qianru Zhang ◽  
Shengliu Yuan ◽  
Peter A. Raymond ◽  
...  

Anthropogenic activities have led to widespread contamination with mercury (Hg), a potent neurotoxin that bioaccumulates through food webs. Recent models estimated that, presently, 200 to 600 t of Hg is sequestered annually in deep-sea sediments, approximately doubling since industrialization. However, most studies did not extend to the hadal zone (6,000- to 11,000-m depth), the deepest ocean realm. Here, we report on measurements of Hg and related parameters in sediment cores from four trench regions (1,560 to 10,840 m), showing that the world’s deepest ocean realm is accumulating Hg at remarkably high rates (depth-integrated minimum–maximum: 24 to 220 μg ⋅ m−2 ⋅ y−1) greater than the global deep-sea average by a factor of up to 400, with most Hg in these trenches being derived from the surface ocean. Furthermore, vertical profiles of Hg concentrations in trench cores show notable increasing trends from pre-1900 [average 51 ± 14 (1σ) ng ⋅ g−1] to post-1950 (81 ± 32 ng ⋅ g−1). This increase cannot be explained by changes in the delivery rate of organic carbon alone but also need increasing Hg delivery from anthropogenic sources. This evidence, along with recent findings on the high abundance of methylmercury in hadal biota [R. Sun et al., Nat. Commun. 11, 3389 (2020); J. D. Blum et al., Proc. Natl. Acad. Sci. U. S. A. 117, 29292–29298 (2020)], leads us to propose that hadal trenches are a large marine sink for Hg and may play an important role in the regulation of the global biogeochemical cycle of Hg.


2021 ◽  
Author(s):  
William D. Orsi ◽  
Aurèle Vuillemin ◽  
Ömer K. Coskun ◽  
Paula Rodriguez ◽  
Yanik Oertel ◽  
...  

AbstractFungi are ubiquitous in the ocean and hypothesized to be important members of marine ecosystems, but their roles in the marine carbon cycle are poorly understood. Here, we use 13C DNA stable isotope probing coupled with phylogenetic analyses to investigate carbon assimilation within diverse communities of planktonic and benthic fungi in the Benguela Upwelling System (Namibia). Across the redox stratified water column and in the underlying sediments, assimilation of 13C-labeled carbon from diatom extracellular polymeric substances (13C-dEPS) by fungi correlated with the expression of fungal genes encoding carbohydrate-active enzymes. Phylogenetic analysis of genes from 13C-labeled metagenomes revealed saprotrophic lineages related to the facultative yeast Malassezia were the main fungal foragers of pelagic dEPS. In contrast, fungi living in the underlying sulfidic sediments assimilated more 13C-labeled carbon from chemosynthetic bacteria compared to dEPS. This coincided with a unique seafloor fungal community and dissolved organic matter composition compared to the water column, and a 100-fold increased fungal abundance within the subseafloor sulfide-nitrate transition zone. The subseafloor fungi feeding on 13C-labeled chemolithoautotrophs under anoxic conditions were affiliated with Chytridiomycota and Mucoromycota that encode cellulolytic and proteolytic enzymes, revealing polysaccharide and protein-degrading fungi that can anaerobically decompose chemosynthetic necromass. These subseafloor fungi, therefore, appear to be specialized in organic matter that is produced in the sediments. Our findings reveal that the phylogenetic diversity of fungi across redox stratified marine ecosystems translates into functionally relevant mechanisms helping to structure carbon flow from primary producers in marine microbiomes from the surface ocean to the subseafloor.


Sign in / Sign up

Export Citation Format

Share Document