stochastic epidemic
Recently Published Documents


TOTAL DOCUMENTS

318
(FIVE YEARS 75)

H-INDEX

30
(FIVE YEARS 6)

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Shijie Liu ◽  
Maoxing Liu

In this study, a deterministic SEQIR model with standard incidence and the corresponding stochastic epidemic model are explored. In the deterministic model, the reproduction number is given, and the local asymptotic stability of the equilibria is proved. When the reproduction number is less than unity, the disease-free equilibrium is locally asymptotically stable, whereas the endemic equilibrium is locally asymptotically stable in the case of a reproduction number greater than unity. A stochastic expansion based on a deterministic model is studied to explore the uncertainty of the spread of infectious diseases. Using the Lyapunov function method, the existence and uniqueness of a global positive solution are considered. Then, the extinction conditions of the epidemic and its asymptotic property around the endemic equilibrium are obtained. To demonstrate the application of this model, a case study based on COVID-19 epidemic data from France, Italy, and the UK is presented, together with numerical simulations using given parameters.


2021 ◽  
Author(s):  
Tahir Khan ◽  
Roman Ullah ◽  
Gul Zaman ◽  
Youssef Khatib

Abstract We formulate a mathematical model has been proposed to describe the stochastic influence of SARS-CoV-2 virus with various sources of randomness and vaccination. We assume the various sources of ran-domness in each population groups by different Brownian motion. We develop the correlated stochastic model by taking into account the various sources of randomness by different Brownian motions and distributed the total human population in three groups of susceptible, infected and recovered with reservoir class. Because reservoir play a significant role in the transmission of SARS-CoV-2 virus spreading. Moreover, the vaccination of susceptible are also accorded. Once we formulate the correlated stochastic model, the existence and uniqueness of positive solution will be discussed to show the problem feasibility. The SARS-CoV-2 extinction as well as persistency will be also discussed and we will obtain the sufficient conditions for it. At the last all the theoretical results will be supported via numerical/graphical findings.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xuqi Zhang ◽  
Haiqi Liu ◽  
Hanning Tang ◽  
Mei Zhang ◽  
Xuedong Yuan ◽  
...  

AbstractExtreme public health interventions play a critical role in mitigating the local and global prevalence and pandemic potential. Here, we use population size for pathogen transmission to measure the intensity of public health interventions, which is a key characteristic variable for nowcasting and forecasting of COVID-19. By formulating a hidden Markov dynamic system and using nonlinear filtering theory, we have developed a stochastic epidemic dynamic model under public health interventions. The model parameters and states are estimated in time from internationally available public data by combining an unscented filter and an interacting multiple model filter. Moreover, we consider the computability of the population size and provide its selection criterion. With applications to COVID-19, we estimate the mean of the effective reproductive number of China and the rest of the globe except China (GEC) to be 2.4626 (95% CI: 2.4142–2.5111) and 3.0979 (95% CI: 3.0968–3.0990), respectively. The prediction results show the effectiveness of the stochastic epidemic dynamic model with nonlinear filtering. The hidden Markov dynamic system with nonlinear filtering can be used to make analysis, nowcasting and forecasting for other contagious diseases in the future since it helps to understand the mechanism of disease transmission and to estimate the population size for pathogen transmission and the number of hidden infections, which is a valid tool for decision-making by policy makers for epidemic control.


Epidemiologia ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 325-337
Author(s):  
Fernando Vadillo

In this paper, we consider a stochastic epidemic model with two pathogens. In order to analyze the coexistence of two pathogens, we compute numerically the expectation time until extinction (the mean persistence time), which satisfies a stationary partial differential equation with degenerate variable coefficients, related to backward Kolmogorov equation. I use the finite element method in order to solve this equation, and we implement it in FreeFem++. The main conclusion of this paper is that the deterministic and stochastic epidemic models differ considerably in predicting coexistence of the two diseases and in the extinction outcome of one of them. Now, the main challenge would be to find an explanation for this result.


Author(s):  
Fahima Ouicher ◽  
Tewfik Kernane

In this paper, we propose two new approximations to the joint quasi-stationary distribution (QSD) of the number susceptible and infected individuals in the Susceptible-Infected-Recovered (SIR) stochastic epidemic model and we derive the marginal QSD of the infected individuals. These two approximations depend on the basic reproduction number [Formula: see text] and give a positive probability of the QSD to all the transient states. Numerical comparisons are presented to check the accuracy of these approximations.


2021 ◽  
Vol 60 (4) ◽  
pp. 4121-4130
Author(s):  
Ghulam Hussain ◽  
Tahir Khan ◽  
Amir Khan ◽  
Mustafa Inc ◽  
Gul Zaman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document