potential marker
Recently Published Documents


TOTAL DOCUMENTS

1943
(FIVE YEARS 625)

H-INDEX

62
(FIVE YEARS 8)

2022 ◽  
Vol 14 (1) ◽  
Author(s):  
Keiko Kabasawa ◽  
Michihiro Hosojima ◽  
Yumi Ito ◽  
Kazuo Matsushima ◽  
Junta Tanaka ◽  
...  

Abstract Background Although metabolic syndrome traits are risk factors for chronic kidney disease, few studies have examined their association with urinary biomarkers. Methods Urinary biomarkers, including A-megalin, C-megalin, podocalyxin, albumin, α1-microglobulin, β2-microglobulin, and N-acetyl-β-D-glucosaminidase, were cross-sectionally assessed in 347 individuals (52.7% men) with a urine albumin-to-creatinine ratio (ACR)  < 300 mg/g in a health checkup. Metabolic syndrome traits were adopted from the National Cholesterol Education Program (third revision) of the Adult Treatment Panel criteria modified for Asians. Results Participants had a mean body mass index, estimated glomerular filtration rate (eGFR), and median ACR of 23.0 kg/m2, 74.8 mL/min/1.73 m2, and 7.5 mg/g, respectively. In age- and sex-adjusted logistic regression analysis, A-megalin and albumin were significantly associated with the clustering number of metabolic syndrome traits (3 or more). After further adjustment with eGFR, higher quartiles of A-megalin and albumin were each independently associated with the clustering number of metabolic syndrome traits (adjusted odds ratio for A-megalin: 1.30 per quartile, 95% CI 1.03–1.64; albumin: 1.42 per quartile, 95% CI 1.12–1.79). Conclusions Both urinary A-megalin and albumin are associated with the clustering number of metabolic syndrome traits. Further research on urinary A-megalin is warranted to examine its role as a potential marker of kidney damage from metabolic risk factors.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Ulyana Bliznyuk ◽  
Valentina Avdyukhina ◽  
Polina Borshchegovskaya ◽  
Timofey Bolotnik ◽  
Victoria Ipatova ◽  
...  

AbstractThe purpose of this work was to compare the effect of electron and X-ray irradiation on microbiological content and volatile organic compounds in chilled turkey meat. Dose ranges which significantly suppress the pathogenic microflora while maintaining the organoleptic properties of the turkey meat are different for electron and X-ray irradiation. According to the study it is recommended to treat chilled turkey using X-ray irradiation with the dose ranging from 0.5 to 0.75 kGy, while in electron irradiation permissible doses should be within 0.25–1 kGy. Three main groups of volatile compounds: alcohols, ketones, and aldehydes—were found in irradiated and non-irradiated samples of turkey meat. It was found that the total amount of aldehydes, which are responsible for the formation of a specific odor of irradiated meat products, increases exponentially with the increase in the absorbed dose for both types of irradiation. It was established that acetone can be used as a potential marker of the fact of exposure of low-fat meat products to ionizing radiation.


2022 ◽  
Vol 44 (1) ◽  
pp. 350-359
Author(s):  
Piotr Łacina ◽  
Aleksandra Butrym ◽  
Diana Frontkiewicz ◽  
Grzegorz Mazur ◽  
Katarzyna Bogunia-Kubik

CD147 (basigin, BSG) is a membrane-bound glycoprotein involved in energy metabolism that plays a role in cancer cell survival. Its soluble form is a promising marker of some diseases, but it is otherwise poorly studied. CD147 is overexpressed in multiple myeloma (MM) and is known to affect MM progression, while its genetic variants are associated with MM survival. In the present study, we aimed to assess serum soluble CD147 (sCD147) expression as a potential marker in MM. We found that sCD147 level was higher in MM patients compared to healthy individuals. It was also higher in patients with more advanced disease (ISS III) compared to both patients with less advanced MM and healthy individuals, while its level was observed to drop after positive response to treatment. Patients with high sCD147 were characterized by worse overall survival. sCD147 level did not directly correlate with bone marrow CD147 mRNA expression. In conclusion, this study suggests that serum sCD147 may be a prognostic marker in MM.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0253406
Author(s):  
Heike Schuler ◽  
Valeria Bonapersona ◽  
Marian Joëls ◽  
R. Angela Sarabdjitsingh

Early-life adversity (ELA) causes long-lasting structural and functional changes to the brain, rendering affected individuals vulnerable to the development of psychopathologies later in life. Immediate-early genes (IEGs) provide a potential marker for the observed alterations, bridging the gap between activity-regulated transcription and long-lasting effects on brain structure and function. Several heterogeneous studies have used IEGs to identify differences in cellular activity after ELA; systematically investigating the literature is therefore crucial for comprehensive conclusions. Here, we performed a systematic review on 39 pre-clinical studies in rodents to study the effects of ELA (alteration of maternal care) on IEG expression. Females and IEGs other than cFos were investigated in only a handful of publications. We meta-analyzed publications investigating specifically cFos expression. ELA increased cFos expression after an acute stressor only if the animals (control and ELA) had experienced additional hits. At rest, ELA increased cFos expression irrespective of other life events, suggesting that ELA creates a phenotype similar to naïve, acutely stressed animals. We present a conceptual theoretical framework to interpret the unexpected results. Overall, ELA likely alters IEG expression across the brain, especially in interaction with other negative life events. The present review highlights current knowledge gaps and provides guidance to aid the design of future studies.


2022 ◽  
Vol 8 ◽  
Author(s):  
Hui Zhang ◽  
Xu Zhang ◽  
Weiguo Xu ◽  
Jian Wang

Background: The oncological role of TMC5 in human cancers has only been revealed partially. We performed integrated bioinformatics analysis to provide a thorough and detailed insight of associations between TMC5 and tumorigenesis, cancer progression, and prognosis.Methods: With reference to the accessible online databases, the TMC5 expressions in tumor tissues and corresponding normal tissues, different pathological stages, and various cancer cells were analyzed, while the protein levels of TMC5 in different cancers were also inspected. Meanwhile, the prognostic value of TMC5 expression in multiple cancers as well as in advanced-stage patients was investigated. Furthermore, the mutational data of TMC5 and its correlation with cancer prognosis were assessed. Moreover, the association between the TMC5 level and immune cell infiltration was evaluated. Next, TMC5-related pathway alterations and drug responses were summarized. Finally, the TMC5 based protein network was generated, and relevant enrichment was performed.Results: In our study, the expression level of TMC5 was significantly higher in the tumor tissue than that of the normal tissues in most cancer types. Fluctuations of TMC5 levels were also observed among different pathological stages. In the meantime, the protein level elevated in the tumor tissue in the cancers enrolled. Moreover, the expression of TMC5 was not only prognostic for overall survival (OS) or recurrence free survival (RFS) in various types of cancers but also correlated to OS in patients with more advanced cancers. Additionally, the mutational status of TMC5 is also associated with prognosis in cancer patients. It is worth noting that the TMC5 level was closely related to immune cell infiltrations, especially in ESCA, TGCT, and USC. The TMC5 expression was also identified as an activator for pathways including PI3K/AKT, RAS/MAPK, and TSC/mTOR, proved to be associated with multiple drug responses and assessed to be interactive with the TMEM family.Conclusion: TMC5 might function as a potential marker for cancer survival and immune responses.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Hong Yu ◽  
Yanbin Niu ◽  
Guohua Jia ◽  
Yujie Liang ◽  
Baolin Chen ◽  
...  

AbstractRetinoic acid-related orphan receptor alpha (RORA) suppression is associated with autism spectrum disorder (ASD) development, although the mechanism remains unclear. In this study, we aim to investigate the potential effect and mechanisms of RORA suppression on autism-like behavior (ALB) through maternal diabetes-mediated mouse model. Our in vitro study in human neural progenitor cells shows that transient hyperglycemia induces persistent RORA suppression through oxidative stress-mediated epigenetic modifications and subsequent dissociation of octamer-binding transcription factor 3/4 from the RORA promoter, subsequently suppressing the expression of aromatase and superoxide dismutase 2. The in vivo mouse study shows that prenatal RORA deficiency in neuron-specific RORA null mice mimics maternal diabetes-mediated ALB; postnatal RORA expression in the amygdala ameliorates, while postnatal RORA knockdown mimics, maternal diabetes-mediated ALB in offspring. In addition, RORA mRNA levels in peripheral blood mononuclear cells decrease to 34.2% in ASD patients (n = 121) compared to the typically developing group (n = 118), and the related Receiver Operating Characteristic curve shows good sensitivity and specificity with a calculated 84.1% of Area Under the Curve for ASD diagnosis. We conclude that maternal diabetes contributes to ALB in offspring through suppression of RORA and aromatase, RORA expression in PBMC could be a potential marker for ASD screening.


Author(s):  
Syarifah Syahirah Syed Abas ◽  
Noralisa Abdul Karim ◽  
Petrick Periyasamy ◽  
Nurasyikin Yusof ◽  
Shamsul Azhar Shah ◽  
...  

Dengue mortality remains high despite monitoring against warning signs (WS). The associations of WS at febrile phase (FP) and hemorrhage at defervescence with the levels and kinetics of ROTEM, platelet count, cortisol, and ferritin were analyzed. Patients with confirmed dengue serology and WS in two centers were screened (n = 275) and 62 eligible patients were recruited prospectively over 9 months. “Vomiting” was the commonest WS (62.9%), with shortened clotting time (CT) INTEM (p = 0.01). “Hematocrit increase” showed significant prolonged CT INTEM, EXTEM, and FIBTEM (p < 0.05). “Platelet decrease” showed reduced platelet function and reduced clot amplitude at 10 min (A10) and maximum clot firmness (MCF) in INTEM and EXTEM (p < 0.001). The kinetics were reduced in platelet count, CT EXTEM, and cortisol (p < 0.05) but increased in CT INTEM (p = 0.03). At FP, “vomiting”, “hematocrit increase”, and “platelet decrease” demonstrated impaired CT, clot strengths A10/MCF and platelet functions. Majority (60/62, 96.7%) had non-severe outcomes, consistent with increase in cortisol kinetics. In conclusion, “vomiting”, “hematocrit increase” and “platelet decrease” at FP correlated with ROTEM. No conclusion could be made further regarding ferritin and cortisol. Larger study is required to study “hematocrit increase” with ROTEM as a potential marker for hemorrhage.


2022 ◽  
Author(s):  
Safaa M. Naes ◽  
Sharaniza Ab-Rahim ◽  
Musalmah Mazlan ◽  
Nurul Azmir Amir Hashim ◽  
Amirah Abdul Rahman

Abstract Background Colorectal cancer (CRC) is one of the most prevalent malignant cancers worldwide. Although the purine metabolism pathway is known to be vital for cancer cells survival mechanism, not much is known on ENT2 role in CRC development and its association with purine metabolites. Hence this study is aimed to determine the level of hypoxanthine phosphoribosyl transferase (HPRT), hypoxanthine, uric acid (UA), and the activity of xanthine oxidase (XO) and relate the findings with the ENT2 expression level in different CRC stages. Methods and results Normal colon cell line; CCD-841CoN and a panel of human CRC cell lines; SW480, HCT15 and HCT116, representing different CRC stages; Dukes’ B, C, and D respectively, have been used to measure HPRT, hypoxanthine/xanthine, UA levels and the activity of XO by biochemical assays. The level of ENT2 gene expression was also performed by qRT-PCR. The levels of HPRT, hypoxanthine were significantly higher (P< 0.05), while XO and UA were lower (P< 0.05) in all CRC stages as compared to the normal colon cells. Furthermore, ENT2 expression was found to be increased in all CRC stages. Despite having the highest level of HPRT and hypoxanthine, ENT2 level is lower in Dukes' D when compared to Dukes' B and C. Conclusion The rate of salvage pathway is increased in CRC development as indicated by the elevated levels of HPRT and hypoxanthine in different CRC stages. Increase ENT2 expression implies its importance in assisting hypoxanthine uptake. This step is vital in order to increase DNA synthesis via hypoxanthine recycling. Thus, ENT2 may be a potential marker in therapeutic development.


2022 ◽  
Author(s):  
Emil Jørsboe ◽  
Mette Korre Andersen ◽  
Line Skotte ◽  
Frederik Filip Stæger ◽  
Nils Joakim Kaas Færgeman ◽  
...  

Background: The common Arctic specific LDLR p.G137S variant was recently shown to be associated with elevated lipid levels. Motivated by this we aimed to investigate the effect of p.G137S on metabolic health, and cardiovascular disease risk among Greenlanders to quantify its impact on the population. Methods: In a population based Greenlandic cohort (n=5063), we tested for associations between the p.G137S variant and metabolic health traits as well as cardiovascular disease risk based on registry data. Additionally, we explored the variant's impact on plasma NMR measured lipoprotein concentration and composition in another Greenlandic cohort (n=1629). Results: 29.5% of the individuals in the cohort carried at least one copy of the p.G137S risk allele. Furthermore, 25.4% of the heterozygous and 54.7% of the homozygous carriers had high levels (>4.9 mmol/L) of LDL cholesterol, which is above the diagnostic level for familial hypercholesterolemia (FH). Moreover, p.G137S was associated with an overall atherosclerotic lipid profile, and increased risk of ischaemic heart disease (HR (95% CI), 1.51 (1.18-1.92), P=0.00096), peripheral artery disease (1.69 (1.01-2.82), P=0.046), and coronary operations (1.78 (1.21-2.62), P=0.0035). Conclusions: Due to its high frequency and large effect sizes, p.G137S has a marked population-level impact, increasing the risk of FH and cardiovascular disease for up to 30% of the Greenlandic population. Thus, p.G137S is a potential marker for early intervention in Arctic populations.


Sign in / Sign up

Export Citation Format

Share Document