persistence diagram
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 11)

H-INDEX

5
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Matthew Bailey ◽  
Mark Wilson

One of the critical tools of persistent homology is the persistence diagram. We demonstrate the applicability of a persistence diagram showing the existence of topological features (here rings in a 2D network) generated over time instead of space as a tool to analyse trajectories of biological networks. We show how the time persistence diagram is useful in order to identify critical phenomena such as rupturing and to visualise important features in 2D biological networks; they are particularly useful to highlight patterns of damage and to identify if particular patterns are significant or ephemeral. Persistence diagrams are also used to analyse repair phenomena, and we explore how the measured properties of a dynamical phenomenon change according to the sampling frequency. This shows that the persistence diagrams are robust and still provide useful information even for data of low temporal resolution. Finally, we combine persistence diagrams across many trajectories to show how the technique highlights the existence of sharp transitions at critical points in the rupturing process.


2021 ◽  
Vol 15 ◽  
Author(s):  
Zhetong Dong ◽  
Hongwei Lin ◽  
Jinhao Chen

Background: In recent geometric design, many effective toolkits for geometric modeling and optimization have been proposed and applied in practical cases, while effective and efficient designing of shapes that have desirable topological properties remains to be a challenge. The development of computational topology, especially persistent homology, permits convenient usage of topological invariants in shape analysis, geometric modeling, and shape optimization. Persistence diagram, the useful topological summary of persistent homology, provides a stable representation of multiscale homology invariants in the presence of noise in original data. Recent works show the wide use of persistent homology tools in geometric design. Objective: In this paper, we review the geometric design based on computational topological tools in three aspects: the extraction of topological features and representations, topology-aware shape modeling, and topology-based shape optimization. Methods: By tracking the development of each aspect and comparing the methods using classical topological invariants, motivations, and key approaches of important related works based on persistent homology are clarified. Results : We review geometric design through topological extraction, topological design, and shape optimization based on topological preservation. Related works show the successful applications of computational topology tools of geometric design. Conclusion: Solutions for the proposed core problems will affect the geometric design and its applications. In the future, the development of computational topology may boost computer-aided topological design.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Christopher Oballe ◽  
David Boothe ◽  
Piotr J. Franaszczuk ◽  
Vasileios Maroulas

<p style='text-indent:20px;'>We propose ToFU, a new trainable neural network unit with a persistence diagram dissimilarity function as its activation. Since persistence diagrams are topological summaries of structures, this new activation measures and learns the topology of data to leverage it in machine learning tasks. We showcase the utility of ToFU in two experiments: one involving the classification of discrete-time autoregressive signals, and another involving a variational autoencoder. In the former, ToFU yields competitive results with networks that use spectral features while outperforming CNN architectures. In the latter, ToFU produces topologically-interpretable latent space representations of inputs without sacrificing reconstruction fidelity.</p>


Algorithms ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 335
Author(s):  
Lida Kanari ◽  
Adélie Garin ◽  
Kathryn Hess

Methods of topological data analysis have been successfully applied in a wide range of fields to provide useful summaries of the structure of complex data sets in terms of topological descriptors, such as persistence diagrams. While there are many powerful techniques for computing topological descriptors, the inverse problem, i.e., recovering the input data from topological descriptors, has proved to be challenging. In this article, we study in detail the Topological Morphology Descriptor (TMD), which assigns a persistence diagram to any tree embedded in Euclidean space, and a sort of stochastic inverse to the TMD, the Topological Neuron Synthesis (TNS) algorithm, gaining both theoretical and computational insights into the relation between the two. We propose a new approach to classify barcodes using symmetric groups, which provides a concrete language to formulate our results. We investigate to what extent the TNS recovers a geometric tree from its TMD and describe the effect of different types of noise on the process of tree generation from persistence diagrams. We prove moreover that the TNS algorithm is stable with respect to specific types of noise.


Algorithms ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 278
Author(s):  
Sarah Tymochko ◽  
Elizabeth Munch ◽  
Firas A. Khasawneh

Bifurcations in dynamical systems characterize qualitative changes in the system behavior. Therefore, their detection is important because they can signal the transition from normal system operation to imminent failure. In an experimental setting, this transition could lead to incorrect data or damage to the entire experiment. While standard persistent homology has been used in this setting, it usually requires analyzing a collection of persistence diagrams, which in turn drives up the computational cost considerably. Using zigzag persistence, we can capture topological changes in the state space of the dynamical system in only one persistence diagram. Here, we present Bifurcations using ZigZag (BuZZ), a one-step method to study and detect bifurcations using zigzag persistence. The BuZZ method is successfully able to detect this type of behavior in two synthetic examples as well as an example dynamical system.


2020 ◽  
Vol 4 (4) ◽  
pp. 509-523
Author(s):  
Jacek Cyranka ◽  
Konstantin Mischaikow ◽  
Charles Weibel

Abstract This work is motivated by the following question in data-driven study of dynamical systems: given a dynamical system that is observed via time series of persistence diagrams that encode topological features of snapshots of solutions, what conclusions can be drawn about solutions of the original dynamical system? We address this challenge in the context of an N dimensional system of ordinary differential equation defined in $${\mathbb {R}}^N$$ R N . To each point in $${\mathbb {R}}^N$$ R N (e.g. an initial condition) we associate a persistence diagram. The main result of this paper is that under this association the preimage of every persistence diagram is contractible. As an application we provide conditions under which multiple time series of persistence diagrams can be used to conclude the existence of a fixed point of the differential equation that generates the time series.


2020 ◽  
Vol 27 (03) ◽  
pp. 455-468
Author(s):  
Yuqing Liu ◽  
Nicholas A. Scoville

We introduce a new notion of equivalence of discrete Morse functions on graphs called persistence equivalence. Two functions are considered persistence equivalent if and only if they induce the same persistence diagram. We compare this notion of equivalence to other notions of equivalent discrete Morse functions. Then we compute an upper bound for the number of persistence equivalent discrete Morse functions on a fixed graph and show that this upper bound is sharp in the case where our graph is a tree. This is a version of the “realization problem” of the persistence map. We conclude with an example illustrating our construction.


10.37236/8679 ◽  
2020 ◽  
Vol 27 (2) ◽  
Author(s):  
Primoz Skraba ◽  
Gugan Thoppe ◽  
D. Yogeshwaran

A weighted $d$-complex is a simplicial complex of dimension $d$ in which each face is assigned a real-valued weight. We derive three key results here concerning persistence diagrams and minimal spanning acycles (MSAs) of such complexes. First, we establish an equivalence between the MSA face-weights and death times in the persistence diagram. Next, we show a novel stability result for the MSA face-weights which, due to our first result, also  holds true for the death and birth times, separately. Our final result concerns a perturbation of a mean-field model of randomly weighted $d$-complexes. The $d$-face weights here are perturbations of some i.i.d. distribution while all the lower-dimensional faces have a weight of $0$. If the perturbations decay sufficiently quickly, we show that suitably scaled extremal nearest face-weights, face-weights of the $d$-MSA, and the associated death times converge to an inhomogeneous Poisson point process. This result completely characterizes the extremal points of persistence diagrams and MSAs. The point process convergence and the asymptotic equivalence of three point processes are new for any weighted random complex model, including even the non-perturbed case. Lastly, as a consequence of our stability result, we show that Frieze's $\zeta(3)$ limit for random minimal spanning trees and the recent extension to random MSAs by Hino and Kanazawa also hold in suitable noisy settings.


Sign in / Sign up

Export Citation Format

Share Document