regulatory pathways
Recently Published Documents


TOTAL DOCUMENTS

1883
(FIVE YEARS 792)

H-INDEX

90
(FIVE YEARS 13)

2022 ◽  
Vol 11 ◽  
Author(s):  
Alexandra Butzmann ◽  
Kaushik Sridhar ◽  
Diwash Jangam ◽  
Hanbing Song ◽  
Amol Singh ◽  
...  

Post-transplant lymphoproliferative disorders (PTLD) are diseases occurring in immunocompromised patients after hematopoietic stem cell transplantation (HCT) or solid organ transplantation (SOT). Although PTLD occurs rarely, it may be associated with poor outcomes. In most cases, PTLD is driven by Epstein-Barr virus (EBV) infection. Few studies have investigated the mutational landscape and gene expression profile of PTLD. In our study, we performed targeted deep sequencing and RNA-sequencing (RNA-Seq) on 16 cases of florid follicular hyperplasia (FFH) type PTLD and 15 cases of other PTLD types that include: ten monomorphic (M-PTLD), three polymorphic (P-PTLD), and two classic Hodgkin lymphoma type PTLDs (CHL-PTLD). Our study identified recurrent mutations in JAK3 in five of 15 PTLD cases and one of 16 FFH-PTLD cases, as well as 16 other genes that were mutated in M-PTLD, P-PTLD, CHL-PTLD and FFH-PTLD. Digital image analysis demonstrated significant differences in single cell area, major axis, and diameter when comparing cases of M-PTLD and P-PTLD to FFH-PTLD. No morphometric relationship was identified with regards to a specific genetic mutation. Our findings suggest that immune regulatory pathways play an essential role in PTLD, with the JAK/STAT pathway affected in many PTLDs.


Author(s):  
Anna Sebestyén ◽  
Titanilla Dankó ◽  
Dániel Sztankovics ◽  
Dorottya Moldvai ◽  
Regina Raffay ◽  
...  

AbstractDespite advancements in cancer management, tumor relapse and metastasis are associated with poor outcomes in many cancers. Over the past decade, oncogene-driven carcinogenesis, dysregulated cellular signaling networks, dynamic changes in the tissue microenvironment, epithelial-mesenchymal transitions, protein expression within regulatory pathways, and their part in tumor progression are described in several studies. However, the complexity of metabolic enzyme expression is considerably under evaluated. Alterations in cellular metabolism determine the individual phenotype and behavior of cells, which is a well-recognized hallmark of cancer progression, especially in the adaptation mechanisms underlying therapy resistance. In metabolic symbiosis, cells compete, communicate, and even feed each other, supervised by tumor cells. Metabolic reprogramming forms a unique fingerprint for each tumor tissue, depending on the cellular content and genetic, epigenetic, and microenvironmental alterations of the developing cancer. Based on its sensing and effector functions, the mechanistic target of rapamycin (mTOR) kinase is considered the master regulator of metabolic adaptation. Moreover, mTOR kinase hyperactivity is associated with poor prognosis in various tumor types. In situ metabolic phenotyping in recent studies highlights the importance of metabolic plasticity, mTOR hyperactivity, and their role in tumor progression. In this review, we update recent developments in metabolic phenotyping of the cancer ecosystem, metabolic symbiosis, and plasticity which could provide new research directions in tumor biology. In addition, we suggest pathomorphological and analytical studies relating to metabolic alterations, mTOR activity, and their associations which are necessary to improve understanding of tumor heterogeneity and expand the therapeutic management of cancer.


Author(s):  
Laura E.R. Blok ◽  
Marina Boon ◽  
Boyd van Reijmersdal ◽  
Kira D. Höffler ◽  
Michaela Fenckova ◽  
...  

Habituation, the most ancient and fundamental form of learning, manifests already before birth. Neuroscientists have been fascinated for decades by its function as a firewall protecting our brains from sensory information overload and its indispensability for higher cognitive processing. Evidence that habituation learning is affected in autism and related monogenic neurodevelopmental syndromes and their animal models has exponentially grown, but the potential of this convergence to advance both fields is still largely unexploited.In this review, we provide a systematic overview of the genes that to date have been demonstrated to underlie habituation across species. We describe the biological processes they converge on, and highlight core regulatory pathways and repurposable drugs that may alleviate the habituation deficits associated with their dysregulation. We also summarize currently used habituation paradigms and extract the most important arguments from literature that support the crucial role of habituation for cognition in health and disease. We conclude that habituation is a powerful tool to overcome current bottlenecks in research, diagnostics and treatment of neurodevelopmental disorders.


2022 ◽  
Vol 23 (2) ◽  
pp. 812
Author(s):  
Lina Kolloch ◽  
Teresa Kreinest ◽  
Michael Meisterernst ◽  
Andrea Oeckinghaus

Inhibition of the dual function cell cycle and transcription kinase CDK7 is known to affect the viability of cancer cells, but the mechanisms underlying cell line-specific growth control remain poorly understood. Here, we employed a previously developed, highly specific small molecule inhibitor that non-covalently blocks ATP binding to CDK7 (LDC4297) to study the mechanisms underlying cell line-specific growth using a panel of genetically heterogeneous human pancreatic tumor lines as model system. Although LDC4297 diminished both transcription rates and CDK T-loop phosphorylation in a comparable manner, some PDAC lines displayed significantly higher sensitivity than others. We focused our analyses on two well-responsive lines (Mia-Paca2 and Panc89) that, however, showed significant differences in their viability upon extended exposure to limiting LDC4297 concentrations. Biochemical and RNAseq analysis revealed striking differences in gene expression and cell cycle control. Especially the downregulation of a group of cell cycle control genes, among them CDK1/2 and CDC25A/C, correlated well to the observed viability differences in Panc89 versus Mia-Paca2 cells. A parallel downregulation of regulatory pathways supported the hypothesis of a feedforward programmatic effect of CDK7 inhibitors, eventually causing hypersensitivity of PDAC lines.


2022 ◽  
Vol 11 ◽  
Author(s):  
Yusheng Guo ◽  
Guohui Wu ◽  
Junrong Yi ◽  
Qin Yang ◽  
Wengong Jiang ◽  
...  

There are significant gender differences in the incidence and mortality of hepatocellular carcinoma (HCC). Compared with men, the incidence and mortality of HCC in women are relatively low. The estrogen signaling pathway, composed of estrogen and estrogen receptors, has been postulated to have a protective effect on the occurrence and development of HCC. There have been multiple studies that have supported anti-HCC effects of the estrogen signaling pathways, including direct and indirect pathways such as genomic pathways, rapid transduction pathways, non-coding RNA, tumor microenvironment, estrogen metabolites, and inhibition of hepatitis infection and replication. Based on the evidence of an anti-HCC effect of the estrogen signaling pathway, a number of strategies have been investigated to determine the potential therapeutic effect. These have included estrogen replacement therapy, targeting the estrogen receptor, key molecules, inflammatory mediators, and regulatory pathways of the estrogen signaling pathway. In this review, we have systematically summarized the latest developments in the complex functions and molecular mechanisms of the estrogen signaling pathway in liver cancer. Furthermore, we have highlighted the potential targets of treatment strategies based on the estrogen signaling pathway in the treatment of liver cancer and the principal obstacles currently encountered for future investigation.


2022 ◽  
Vol 12 ◽  
Author(s):  
Jiazi Zhang ◽  
Hongchun Xiong ◽  
Huijun Guo ◽  
Yuting Li ◽  
Xiaomei Xie ◽  
...  

The wheat AP2 family gene Q controls domestication traits, including spike morphology and threshability, which are critical for the widespread cultivation and yield improvement of wheat. Although many studies have investigated the molecular mechanisms of the Q gene, its direct target genes, especially those controlling spike morphology, are not clear, and its regulatory pathways are not well established. In this study, we conducted gene mapping of a wheat speltoid spike mutant and found that a new allele of the Q gene with protein truncation played a role in spike morphology variation in the mutant. Dynamic expression levels of the Q gene throughout the spike development process suggested that the transcript abundances of the mutant were decreased at the W6 and W7 scales compared to those of the WT. We identified several mutation sites on the Q gene and showed that mutations in different domains resulted in distinct phenotypes. In addition, we found that the Q gene produced three transcripts via alternative splicing and that they exhibited differential expression patterns in nodes, internodes, flag leaves, and spikes. Finally, we identified several target genes directly downstream of Q, including TaGRF1-2D and TaMGD-6B, and proposed a possible regulatory network. This study uncovered the target genes of Q, and the results can help to clarify the mechanism of wheat spike morphology and thereby improve wheat grain yield.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Gabriel M. Hauswirth ◽  
Victoria C. Garside ◽  
Lisa S. F. Wong ◽  
Heidi Bildsoe ◽  
Jan Manent ◽  
...  

AbstractThe vertebral column of individual mammalian species often exhibits remarkable robustness in the number and identity of vertebral elements that form (known as axial formulae). The genetic mechanism(s) underlying this constraint however remain ill-defined. Here, we reveal the interplay of three regulatory pathways (Gdf11, miR-196 and Retinoic acid) is essential in constraining total vertebral number and regional axial identity in the mouse, from cervical through to tail vertebrae. All three pathways have differing control over Hox cluster expression, with heterochronic and quantitative changes found to parallel changes in axial identity. However, our work reveals an additional role for Hox genes in supporting axial elongation within the tail region, providing important support for an emerging view that mammalian Hox function is not limited to imparting positional identity as the mammalian body plan is laid down. More broadly, this work provides a molecular framework to interrogate mechanisms of evolutionary change and congenital anomalies of the vertebral column.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Vladimir Lažetić ◽  
Fengting Wu ◽  
Lianne B. Cohen ◽  
Kirthi C. Reddy ◽  
Ya-Ting Chang ◽  
...  

AbstractDefense against intracellular infection has been extensively studied in vertebrate hosts, but less is known about invertebrate hosts; specifically, the transcription factors that induce defense against intracellular intestinal infection in the model nematode Caenorhabditis elegans remain understudied. Two different types of intracellular pathogens that naturally infect the C. elegans intestine are the Orsay virus, which is an RNA virus, and microsporidia, which comprise a phylum of fungal pathogens. Despite their molecular differences, these pathogens induce a common host transcriptional response called the intracellular pathogen response (IPR). Here we show that zip-1 is an IPR regulator that functions downstream of all known IPR-activating and regulatory pathways. zip-1 encodes a putative bZIP transcription factor, and we show that zip-1 controls induction of a subset of genes upon IPR activation. ZIP-1 protein is expressed in the nuclei of intestinal cells, and is at least partially required in the intestine to upregulate IPR gene expression. Importantly, zip-1 promotes resistance to infection by the Orsay virus and by microsporidia in intestinal cells. Altogether, our results indicate that zip-1 represents a central hub for triggers of the IPR, and that this transcription factor has a protective function against intracellular pathogen infection in C. elegans.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuta Yoshino ◽  
Bhaskar Roy ◽  
Yogesh Dwivedi

AbstractChronic stress is one of the key precipitating factors in major depressive disorder (MDD). Stress associated studies have underscored the mechanistic role of epigenetic master players like microRNAs (miRNAs) in depression pathophysiology at both preclinical and clinical levels. Previously, we had reported changes in miR-218-5p expression in response to corticosterone (CORT) induced chronic stress. MiR-218-5p was one of the most significantly induced miRNAs in the prefrontal cortex (PFC) of rats under chronic stress. In the present report, we have investigated how chronic CORT exposure mechanistically affected miR-218-5p expression in the rat brain and how miR-218 could trigger molecular changes on its downstream regulatory pathways. Elevated expression of miR-218-5p was found in the PFC of CORT-treated rats. A glucocorticoid receptor (GR) targeted Chromatin-Immunoprecipitation (ChIP) assay revealed high GR occupancy on the promoter region of Slit3 gene hosting miR-218-2 in its 3rd intron. RNA-sequencing data based on RNA Induced silencing Complex Immunoprecipitation (RISC-IP) with AGO2 in SH-SY5Y cells detected six consistent target genes of miR-218-5p (APOL4, DTWD1, BNIP1, METTL22, SNAPC1, and HDAC6). The expression of all five genes, except APOL4, was successfully validated with qPCR in CORT-treated rat PFC. Further, Hdac6-based ChIP-seq experiment helped in mapping major genomic loci enriched for intergenic regions in the PFC of CORT-treated rat. A proximity-based gene ontology (GO) analysis revealed a majority of the intergenic sites to be part of key genes implicated in central nervous system functions, notably synapse organization, neuron projection morphogenesis, and axonogenesis. Our results suggest that the upregulation of miR-218-5p in PFC of CORT-treated rats possibly resulted from GR biding in the promoter region of Slit3 gene. Interestingly, Hdac6 was one of the consistent target genes potentially found to regulate CNS related genes by chromatin modification. Collectively, these findings establish the role of miR-218-5p in chronic stress and the epigenetic function it plays to induce chromatin-based transcriptional changes of several CNS genes in triggering stress-induced disorders, including depression. This also opens up the scope to understand the role of miR-218-5p as a potential target for noncoding RNA therapeutics in clinical depression.


2022 ◽  
Author(s):  
Joan Marquez-Molins ◽  
Pascual Villalba-Bermell ◽  
Julia Corell-Sierra ◽  
Vicente Pallas ◽  
Gustavo Gomez

Constricted by an extreme biological simplicity, viroids are compelled to subvert host regulatory networks in order to accomplish their infectious process. Most of the studies focused on the response to viroid infection have only addressed a specific host regulatory level and considered a unique infection time. Thus, much remains to be done if we want to understand the temporal evolution and complex nature of viroid-host interactions. Here we present an integrative analysis of the timing and intensity of the genome-wide alterations in cucumber plants infected with Hop stunt viroid (HSVd). Differential host transcriptome, sRNAnome and methylome were integrated to determine the temporal response to viroid-infection. Our results support that HSVd promotes a dynamic redesign of the cucumber regulatory pathways predominantly affecting specific regulatory layers at different infection phases. Remarkably, the initial response was characterized by a reconfiguration of the host transcriptome by differential exon usage, followed by a predominant down-regulation of the transcriptional activity possibly modulated by the host epigenetic changes associated to infection and characterized by an increased hypermethylation. The silencing of at least three cucumber transcripts potential targets of vd-sRNAs was also observed. The alteration in host sRNA and miRNA metabolism was marginal. We expect that these data constituting the first comprehensive map of the cucumber-response to HSVd could contribute to elucidate the molecular basis of the host alterations triggered by viroid infection.


Sign in / Sign up

Export Citation Format

Share Document