cgg repeat
Recently Published Documents


TOTAL DOCUMENTS

288
(FIVE YEARS 83)

H-INDEX

41
(FIVE YEARS 4)

2022 ◽  
Vol 14 (1) ◽  
Author(s):  
Jessica Klusek ◽  
Amanda Fairchild ◽  
Carly Moser ◽  
Marsha R. Mailick ◽  
Angela John Thurman ◽  
...  

Abstract Background Women who carry a premutation allele of the FMR1 gene are at increased vulnerability to an array of age-related symptoms and disorders, including age-related decline in select cognitive skills. However, the risk factors for age-related decline are poorly understood, including the potential role of family history and genetic factors. In other forms of pathological aging, early decline in syntactic complexity is observed and predicts the later onset of neurodegenerative disease. To shed light on the earliest signs of degeneration, the present study characterized longitudinal changes in the syntactic complexity of women with the FMR1 premutation across midlife, and associations with family history of fragile X-associated tremor/ataxia syndrome (FXTAS) and CGG repeat length. Methods Forty-five women with the FMR1 premutation aged 35–64 years at study entry participated in 1–5 longitudinal assessments spaced approximately a year apart (130 observations total). All participants were mothers of children with confirmed fragile X syndrome. Language samples were analyzed for syntactic complexity and participants provided information on family history of FXTAS. CGG repeat length was determined via molecular genetic testing. Results Hierarchical linear models indicated that women who reported a family history of FXTAS exhibited faster age-related decline in syntactic complexity than those without a family history, with that difference emerging as the women reached their mid-50 s. CGG repeat length was not a significant predictor of age-related change. Conclusions Results suggest that women with the FMR1 premutation who have a family history of FXTAS may be at increased risk for neurodegenerative disease, as indicated by age-related loss of syntactic complexity. Thus, family history of FXTAS may represent a personalized risk factor for age-related disease. Follow-up study is needed to determine whether syntactic decline is an early indicator of FXTAS specifically, as opposed to being a more general age-related cognitive decline associated with the FMR1 premutation.


2022 ◽  
Vol 15 ◽  
Author(s):  
Lauren M. Schmitt ◽  
Kelli C. Dominick ◽  
Rui Liu ◽  
Ernest V. Pedapati ◽  
Lauren E. Ethridge ◽  
...  

Over 200 Cytosine-guanine-guanine (CGG) trinucleotide repeats in the 5′ untranslated region of the Fragile X mental retardation 1 (FMR1) gene results in a “full mutation,” clinically Fragile X Syndrome (FXS), whereas 55 – 200 repeats result in a “premutation.” FMR1 premutation carriers (PMC) are at an increased risk for a range of psychiatric, neurocognitive, and physical conditions. Few studies have examined the variable expression of neuropsychiatric features in female PMCs, and whether heterogeneous presentation among female PMCs may reflect differential presentation of features in unique subgroups. In the current pilot study, we examined 41 female PMCs (ages 17–78 years) and 15 age-, sex-, and IQ-matched typically developing controls (TDC) across a battery of self-report, eye tracking, expressive language, neurocognitive, and resting state EEG measures to determine the feasibility of identifying discrete clusters. Secondly, we sought to identify the key features that distinguished these clusters of female PMCs. We found a three cluster solution using k-means clustering. Cluster 1 represented a psychiatric feature group (27% of our sample); cluster 2 represented a group with executive dysfunction and elevated high frequency neural oscillatory activity (32%); and cluster 3 represented a relatively unaffected group (41%). Our findings indicate the feasibility of using a data-driven approach to identify naturally occurring clusters in female PMCs using a multi-method assessment battery. CGG repeat count and its association with neuropsychiatric features differ across clusters. Together, our findings provide important insight into potential diverging pathophysiological mechanisms and risk factors for each female PMC cluster, which may ultimately help provide novel and individualized targets for treatment options.


Author(s):  
Yuzo Fujino ◽  
Yoshitaka Nagai

Expanded short tandem repeats in the genome cause various monogenic diseases, particularly neurological disorders. Since the discovery of a CGG repeat expansion in the FMR1 gene in 1991, more than 40 repeat expansion diseases have been identified to date. In the coding repeat expansion diseases, in which the expanded repeat sequence is located in the coding regions of genes, the toxicity of repeat polypeptides, particularly misfolding and aggregation of proteins containing an expanded polyglutamine tract, have been the focus of investigation. On the other hand, in the non-coding repeat expansion diseases, in which the expanded repeat sequence is located in introns or untranslated regions, the toxicity of repeat RNAs has been the focus of investigation. Recently, these repeat RNAs were demonstrated to be translated into repeat polypeptides by the novel mechanism of repeat-associated non-AUG translation, which has extended the research direction of the pathological mechanisms of this disease entity to include polypeptide toxicity. Thus, a common pathogenesis has been suggested for both coding and non-coding repeat expansion diseases. In this review, we briefly outline the major pathogenic mechanisms of repeat expansion diseases, including a loss-of-function mechanism caused by repeat expansion, repeat RNA toxicity caused by RNA foci formation and protein sequestration, and toxicity by repeat polypeptides. We also discuss perturbation of the physiological liquid-liquid phase separation state caused by these repeat RNAs and repeat polypeptides, as well as potential therapeutic approaches against repeat expansion diseases.


2021 ◽  
Author(s):  
Isha Jalnapurkar ◽  
Jean A. Frazier ◽  
Mark Roth ◽  
David M. Cochran ◽  
Ann Foley ◽  
...  

Abstract Background: Fragile X syndrome (FXS) is the most common cause inherited cause of intellectual disability in males and the most common single gene cause of autism. This X-linked disorder is caused by an expansion of a trinucleotide CGG repeat (>200 base pairs) on the promotor region of the fragile X mental retardation 1 gene (FMR1). This leads to the deficiency or absence of the encoded protein, Fragile X mental retardation protein (FMRP). FMRP has a central role in the translation of mRNAs involved in synaptic connections and plasticity. Recent studies have demonstrated the benefit of therapeutics focused on reactivation of the FMR1 locus towards improving key clinical phenotypes via restoration of FMRP and ultimately disease modification. A key step in future studies directed towards this effort is the establishment of proof of concept (POC) for FMRP reactivation in individuals with FXS. For this it is key to determine the feasibility of repeated collection of tissues or fluids to measure FMR1 and FMRP. Methods: Individuals, ages 3 to 22 years of age, with FXS and those who were typically developing participated in this single-site pilot clinical biomarker study. The repeated collection of hair follicles was compared with the collection of blood and buccal swabs for detection of FMR1 mRNA and FMRP and related molecules. Results: There were n = 15 participants, of whom 10 had a diagnosis of FXS (7.0 ± 3.56 years) and 5 were typically developing (8.2 ± 2.77 years). Absolute levels of FMRP and FMR1 mRNA were substantially higher in healthy participants compared to full mutation and mosaic FXS participants, and lowest in the FXS boys. Measurement of FMR1 and FMRP levels by any method did not show any notable variation by collection location at home versus office across the various sample collection methodologies of hair follicle, blood sample, and buccal swab. Conclusion: Findings demonstrated that repeated sampling of hair follicles in individuals with FXS, in both, home and office settings, is feasible, repeatable, and can be used for measurement of FMR1 and FMRP in longitudinal studies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Juan Pozo-Palacios ◽  
Arianne Llamos-Paneque ◽  
Christian Rivas ◽  
Emily Onofre ◽  
Andrea López-Cáceres ◽  
...  

Fragile X syndrome (FXS) is the most common cause of hereditary intellectual disability and the second most common cause of intellectual disability of genetic etiology. This complex neurodevelopmental disorder is caused by an alteration in the CGG trinucleotide expansion in fragile X mental retardation gene 1 (FMR1) leading to gene silencing and the subsequent loss of its product: fragile X mental retardation protein 1 (FMRP). Molecular diagnosis is based on polymerase chain reaction (PCR) screening followed by Southern blotting (SB) or Triplet primer-PCR (TP-PCR) to determine the number of CGG repeats in the FMR1 gene. We performed, for the first time, screening in 247 Ecuadorian male individuals with clinical criteria to discard FXS. Analysis was carried out by the Genetics Service of the Hospital de Especialidades No. 1 de las Fuerzas Armadas (HE-1), Ecuador. The analysis was performed using endpoint PCR for CGG fragment expansion analysis of the FMR1 gene. Twenty-two affected males were identified as potentially carrying the full mutation in FMR1 and thus diagnosed with FXS that is 8.1% of the sample studied. The average age at diagnosis of the positive cases was 13 years of age, with most cases from the geographical area of Pichincha (63.63%). We confirmed the familial nature of the disease in four cases. The range of CGG variation in the population was 12–43 and followed a modal distribution of 27 repeats. Our results were similar to those reported in the literature; however, since it was not possible to differentiate between premutation and mutation cases, we can only establish a molecular screening approach to identify an expanded CGG repeat, which makes it necessary to generate national strategies to optimize molecular tests and establish proper protocols for the diagnosis, management, and follow-up of patients, families, and communities at risk of presenting FXS.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Areerat Hnoonual ◽  
Charunee Jankittunpaiboon ◽  
Pornprot Limprasert

Autism spectrum disorder (ASD) is a complex disorder with a heterogeneous etiology. Fragile X syndrome (FXS) is recognized as the most common single gene mutation associated with ASD. FXS patients show some autistic behaviors and may be difficult to distinguish at a young age from autistic children. However, there have been no published reports on the prevalence of FXS in ASD patients in Thailand. In this study, we present a pilot study to analyze the CGG repeat sizes of the FMR1 gene in Thai autistic patients. We screened 202 unrelated Thai patients (168 males and 34 females) with nonsyndromic ASD and 212 normal controls using standard FXS molecular diagnosis techniques. The distributions of FMR1 CGG repeat sizes in the ASD and normal control groups were similar, with the two most common alleles having 29 and 30 CGG repeats, followed by an allele with 36 CGG repeats. No FMR1 full mutations or premutations were found in either ASD individuals or the normal controls. Interestingly, three ASD male patients with high normal CGG and intermediate CGG repeats (44, 46, and 53 CGG repeats) were identified, indicating that the prevalence of FMR1 intermediate alleles in Thai ASD patients was approximately 1% while these alleles were absent in the normal male controls. Our study indicates that CGG repeat expansions of the FMR1 gene may not be a common genetic cause of nonsyndromic ASD in Thai patients. However, further studies for mutations other than the CGG expansion in the FMR1 gene are required to get a better information on FXS prevalence in Thai ASD patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Danuta Z. Loesch ◽  
Bruce E. Kemp ◽  
Minh Q. Bui ◽  
Paul R. Fisher ◽  
Claire Y. Allan ◽  
...  

Fragile X Associated Tremor/Ataxia Syndrome (FXTAS) is a neurodegenerative disorder affecting carriers of premutation alleles (PM) of the X-linked FMR1 gene, which contain CGG repeat expansions of 55–200 range in a non-coding region. This late-onset disorder is characterised by the presence of tremor/ataxia and cognitive decline, associated with the white matter lesions throughout the brain, especially involving the middle cerebellar peduncles. Nearly half of older male and ~ 20% of female PM carriers develop FXTAS. While there is evidence for mitochondrial dysfunction in neural and some peripheral tissues from FXTAS patients (though less obvious in the non-FXTAS PM carriers), the results from peripheral blood mononuclear cells (PBMC) are still controversial. Motor, cognitive, and neuropsychiatric impairments were correlated with measures of mitochondrial and non-mitochondrial respiratory activity, AMPK, and TORC1 cellular stress-sensing protein kinases, and CGG repeat size, in a sample of adult FXTAS male and female carriers. Moreover, the levels of these cellular measures, all derived from Epstein- Barr virus (EBV)- transformed and easily accessible blood lymphoblasts, were compared between the FXTAS (N = 23) and non-FXTAS (n = 30) subgroups, and with baseline data from 33 healthy non-carriers. A significant hyperactivity of cellular bioenergetics components as compared with the baseline data, more marked in the non-FXTAS PMs, was negatively correlated with repeat numbers at the lower end of the CGG-PM distribution. Significant associations of these components with motor impairment measures, including tremor-ataxia and parkinsonism, and neuropsychiatric changes, were prevalent in the FXTAS subgroup. Moreover, a striking elevation of AMPK activity, and a decrease in TORC1 levels, especially in the non-FXTAS carriers, were related to the size of CGG expansion. The bioenergetics changes in blood lymphoblasts are biomarkers of the clinical status of FMR1 carriers. The relationship between these changes and neurological involvement in the affected carriers suggests that brain bioenergetic alterations are reflected in this peripheral tissue. A possible neuroprotective role of stress sensing kinase, AMPK, in PM carriers, should be addressed in future longitudinal studies. A decreased level of TORC1—the mechanistic target of the rapamycin complex, suggests a possible future approach to therapy in FXTAS.


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1669
Author(s):  
Cedrik Tekendo-Ngongang ◽  
Angela Grochowsky ◽  
Benjamin D. Solomon ◽  
Sho T. Yano

FMR1 (FMRP translational regulator 1) variants other than repeat expansion are known to cause disease phenotypes but can be overlooked if they are not accounted for in genetic testing strategies. We collected and reanalyzed the evidence for pathogenicity of FMR1 coding, noncoding, and copy number variants published to date. There is a spectrum of disease-causing FMR1 variation, with clinical and functional evidence supporting pathogenicity of five splicing, five missense, one in-frame deletion, one nonsense, and four frameshift variants. In addition, FMR1 deletions occur in both mosaic full mutation patients and as constitutional pathogenic alleles. De novo deletions arise not only from full mutation alleles but also alleles with normal-sized CGG repeats in several patients, suggesting that the CGG repeat region may be prone to genomic instability even in the absence of repeat expansion. We conclude that clinical tests for potentially FMR1-related indications such as intellectual disability should include methods capable of detecting small coding, noncoding, and copy number variants.


Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1633
Author(s):  
Bruce E. Hayward ◽  
Karen Usdin

The Fragile X-related disorders (FXDs), which include the intellectual disability fragile X syndrome (FXS), are disorders caused by expansion of a CGG-repeat tract in the 5′ UTR of the X-linked FMR1 gene. These disorders are named for FRAXA, the folate-sensitive fragile site that localizes with the CGG-repeat in individuals with FXS. Two pathological FMR1 allele size classes are distinguished. Premutation (PM) alleles have 54–200 repeats and confer the risk of fragile X-associated tremor/ataxia syndrome (FXTAS) and fragile X-associated primary ovarian insufficiency (FXPOI). PM alleles are prone to both somatic and germline expansion, with female PM carriers being at risk of having a child with >200+ repeats. Inheritance of such full mutation (FM) alleles causes FXS. Contractions of PM and FM alleles can also occur. As a result, many carriers are mosaic for different sized alleles, with the clinical presentation depending on the proportions of these alleles in affected tissues. Furthermore, it has become apparent that the chromosomal fragility of FXS individuals reflects an underlying problem that can lead to chromosomal numerical and structural abnormalities. Thus, large numbers of CGG-repeats in the FMR1 gene predisposes individuals to multiple forms of genome instability. This review will discuss our current understanding of these processes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Andrea Elias-Mas ◽  
Maria Isabel Alvarez-Mora ◽  
Conxita Caro-Benito ◽  
Laia Rodriguez-Revenga

FMR1 premutation is defined by 55–200 CGG repeats in the Fragile X Mental Retardation 1 (FMR1) gene. FMR1 premutation carriers are at risk of developing a neurodegenerative disease called fragile X-associated tremor/ataxia syndrome (FXTAS) and Fragile X-associated primary ovarian insufficiency (FXPOI) in adulthood. In the last years an increasingly board spectrum of clinical manifestations including psychiatric disorders have been described as occurring at a greater frequency among FMR1 premutation carriers. Herein, we reviewed the neuroimaging findings reported in relation with psychiatric symptomatology in adult FMR1 premutation carriers. A structured electronic literature search was conducted on FMR1 premutation and neuroimaging yielding a total of 3,229 articles examined. Of these, 7 articles were analyzed and are included in this review. The results showed that the main radiological findings among adult FMR1 premutation carriers presenting neuropsychiatric disorders were found on the amygdala and hippocampus, being the functional abnormalities more consistent and the volumetric changes more inconsistent among studies. From a molecular perspective, CGG repeat size, FMR1 mRNA and FMRP levels have been investigated in relation with the neuroimaging findings. Based on the published results, FMRP might play a key role in the pathophysiology of the psychiatric symptoms described among FMR1 premutation carriers. However, additional studies including further probes of brain function and a broader scope of psychiatric symptom measurement are required in order to obtain a comprehensive landscape of the neuropsychiatric phenotype associated with the FMR1 premutation.


Sign in / Sign up

Export Citation Format

Share Document