reducing power
Recently Published Documents


TOTAL DOCUMENTS

2529
(FIVE YEARS 1102)

H-INDEX

61
(FIVE YEARS 11)

2024 ◽  
Vol 84 ◽  
Author(s):  
Â. C. O. Lima ◽  
E. R. Dias ◽  
I. M. A. Reis ◽  
K. O. Carneiro ◽  
A. M. Pinheiro ◽  
...  

Abstract The antioxidant activity of Tetragonisca angustula honey (TAH) and its ethanolic extract (TAEE) were investigated. The total levels of phenolic (TPC) and flavonoids (TFC) were also evaluated. The results for TPC were 19.91 ± 0.38 and 29.37 ± 1.82 mg GAE g-1 and for TFC 0.20 ± 0.02 and 0.14 ± 0.01 mg QE g-1 of TAH and TAEE, respectively. Antioxidant activities were 73.29 ± 0.49% and 93.36 ± 0.27% in the DPPH● assay and 71.73 ± 4.07% and 97.86 ± 0.35% in ABTS●+ for TAH and TAEE, respectively. The total reducing activity was determined by the method of reducing power (PR) and iron ion (Fe III) and the results varied in PR from 151.7 ± 25.7 and 230.7 ± 25.2 mg GAE L-1, for TAH and TAEE respectively and for (Fe III) in EC50 0.284 in TAEE and 0.687 in TAH. Chemical analysis by HPLC-DAD of the ethanolic extract (TAEE) revealed the presence of ferulic acid as majority phenolic component in the extract. The 1H NMR analysis confirmed this structure and showed the also presence of glucose, citric acid, succinic acid, proline and hydrocarbon derivatives. In addition, the botanical origin was also investigated and showed a multifloral characteristic, having found 19 pollen types with a botanical predominance of the Anacardiaceae family, with Tapirira pollen occurring as predominant (42.6%) and Schinus as secondary (25.7%). The results showed that T. angustula honey is an interesting source of antioxidant phenolic compounds due to its floral origin and can act as a protector of human health when consumed.


Author(s):  
Raed Taleb Al-Zubi ◽  
Abdulraheem Ahmed Kreishan ◽  
Mohammad Qasem Alawad ◽  
Khalid Ahmad Darabkh

<span>In recent years, wireless sensor networks (WSNs) have been considered one of the important topics for researchers due to their wide applications in our life. Several researches have been conducted to improve WSNs performance and solve their issues. One of these issues is the energy limitation in WSNs since the source of energy in most WSNs is the battery. Accordingly, various protocols and techniques have been proposed with the intention of reducing power consumption of WSNs and lengthen their lifetime. Cluster-oriented routing protocols are one of the most effective categories of these protocols. In this article, we consider a major issue affecting the performance of this category of protocols, which we call the intra/inter-cluster event-reporting problem (IICERP). We demonstrate that IICERP severely reduces the performance of a cluster-oriented routing protocol, so we suggest an effective Solution for IICERP (SIICERP). To assess SIICERP’s performance, comprehensive simulations were performed to demonstrate the performance of several cluster-oriented protocols without and with SIICERP. Simulation results revealed that SIICERP substantially increases the performance of cluster-oriented routing protocols.</span>


2022 ◽  
Vol 8 ◽  
Author(s):  
Emmanuel Anyachukwu Irondi ◽  
Adekemi Esther Adewuyi ◽  
Tolulope Muktar Aroyehun

This study evaluated the effect of endogenous lipids and proteins on the antioxidants, starch digestibility, and pasting properties of sorghum (Sorghum bicolor) flour (SF). Endogenous lipids and/or proteins were removed from different portions of SF to obtain defatted (DF), deproteinized (DP), and defatted and deproteinized (DF-DP) flours. Bioactive constituents (total phenolics, tannins, flavonoids, saponins, and anthocyanins), antioxidant activities [2,2-Azinobis (3-ethyl-benzothiazoline-6-sulfonic acid) radical cation (ABTS*+) and 2, 2-Diphenyl-2-picrylhydrazyl radical (DPPH*) scavenging activities, reducing power, and Fe2+ chelating capacity], starch, amylose, starch hydrolysis index (HI), estimated glycemic index (eGI), and pasting properties of treated and control (untreated) flours were determined. The control flour (SF) had significantly higher (p &lt; 0.05) levels of all the bioactive constituents and antioxidant activity tested than the DF, DP, and DF-DP flours, while the DF-DP flour had the least levels of bioactive constituents and antioxidant activity. In contrast, the starch, amylose, HI, and eGI were consistently in the order of DF-DP &gt; DF &gt; DP &gt; control flour (p &lt; 0.05). The control flour had the highest (p &lt; 0.05) peak viscosity, and the least peak time and pasting temperature, while the DF flour had the highest final viscosity. Therefore, endogenous lipids and proteins contribute to the antioxidant, starch digestibility, and pasting properties of sorghum flour.


2022 ◽  
Vol 14 (2) ◽  
pp. 904
Author(s):  
William O. Taylor ◽  
Peter L. Watson ◽  
Diego Cerrai ◽  
Emmanouil Anagnostou

This paper develops a statistical framework to analyze the effectiveness of vegetation management at reducing power outages during storms of varying severity levels. The framework was applied on the Eversource Energy distribution grid in Connecticut, USA based on 173 rain and wind events from 2005–2020, including Hurricane Irene, Hurricane Sandy, and Tropical Storm Isaias. The data were binned by storm severity (high/low) and vegetation management levels, where a maximum applicable length of vegetation management for each circuit was determined, and the data were divided into four bins based on the actual length of vegetation management performed divided by the maximum applicable value (0–25%, 25–50%, 50–75%, and 75–100%). Then, weather and overhead line length normalized outage statistics were taken for each group. The statistics were used to determine the effectiveness of vegetation management and its dependence on storm severity. The results demonstrate a higher reduction in damages for lower-severity storms, with a reduction in normalized outages between 45.8% and 63.8%. For high-severity events, there is a large increase in effectiveness between the highest level of vegetation management and the two lower levels, with 75–100% vegetation management leading to a 37.3% reduction in trouble spots. Yet, when evaluating system reliability, it is important to look at all storms combined, and the results of this study provide useful information on total annual trouble spots and allow for analysis of how various vegetation management scenarios would impact trouble spots in the electric grid. This framework can also be used to better understand how more rigorous vegetation management standards (applying ETT) help reduce outages at an individual event level. In future work, a similar framework may be used to evaluate other resilience improvements.


Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 124
Author(s):  
Min-Kyeong Kim ◽  
Yang-Kyu Choi ◽  
Jun-Young Park

Device guidelines for reducing power with punch-through current annealing in gate-all-around (GAA) FETs were investigated based on three-dimensional (3D) simulations. We studied and compared how different geometric dimensions and materials of GAA FETs impact heat management when down-scaling. In order to maximize power efficiency during electro-thermal annealing (ETA), applying gate module engineering was more suitable than engineering the isolation or source drain modules.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 474
Author(s):  
Tahira Sultana ◽  
Madiha Ahmed ◽  
Nosheen Akhtar ◽  
Mohammad K. Okla ◽  
Abdulrahman Al-Hashimi ◽  
...  

The present study was designed to evaluate polarity-dependent extraction efficiency and pharmacological profiling of Polygonum glabrum Willd. Crude extracts of leaves, roots, stems, and seeds, prepared from solvents of varying polarities, were subjected to phytochemical, antioxidant, antibacterial, antifungal, antidiabetic, and cytotoxicity assays. Maximum extraction yield (20.0% w/w) was observed in the case of an acetone:methanol (AC:M) root extract. Distilled water:methanol (W:M) leaves extract showed maximum phenolic contents. Maximum flavonoid content and free radical scavenging potential were found in methanolic (M) seed extract. HPLC-DAD quantification displayed the manifestation of substantial quantities of quercetin, rutin, gallic acid, quercetin, catechin, and kaempferol in various extracts. The highest ascorbic acid equivalent total antioxidant capacity and reducing power potential was found in distilled water roots and W:M leaf extracts, respectively. Chloroform (C) seeds extract produced a maximum zone of inhibition against Salmonella typhimurium. Promising protein kinase inhibition and antifungal activity against Mucor sp. were demonstrated by C leaf extract. AC:M leaves extract exhibited significant cytotoxic capability against brine shrimp larvae and α-amylase inhibition. Present results suggest that the nature of pharmacological responses depends upon the polarity of extraction solvents and parts of the plant used. P. glabrum can be considered as a potential candidate for the isolation of bioactive compounds with profound therapeutic importance.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Seyed Hossein Mousavi ◽  
Seyedeh Sadeghian Sadeghian Motahar ◽  
Maryam Salami ◽  
Kaveh Kavousi ◽  
Atefeh Sheykh Abdollahzadeh Mamaghani ◽  
...  

AbstractThe carbohydrate-hydrolyzing enzymes play a crucial role in increasing the phenolic content and nutritional properties of polysaccharides substrate, essential for cost-effective industrial applications. Also, improving the feed efficiency of poultry is essential to achieve significant economic benefits. The current study introduced a novel thermostable metagenome-derived xylanase named PersiXyn8 and investigated its synergistic effect with previously reported α-amylase (PersiAmy3) to enhance poultry feed utilization. The potential of the enzyme cocktail in the degradation of poultry feed was analyzed and showed 346.73 mg/g poultry feed reducing sugar after 72 h of hydrolysis. Next, the impact of solid-state fermentation on corn quality was investigated in the presence and absence of enzymes. The phenolic content increased from 36.60 mg/g GAE in control sample to 68.23 mg/g in the presence of enzymes. In addition, the enzyme-treated sample showed the highest reducing power OD 700 of 0.217 and the most potent radical scavenging activity against ABTS (40.36%) and DPPH (45.21%) radicals. Moreover, the protein and ash contents of the fermented corn increased by 4.88% and 6.46%, respectively. These results confirmed the potential of the carbohydrate-hydrolyzing enzymes cocktail as a low-cost treatment for improving the phenolic content, antioxidant activity, and nutritional values of corn for supplementation of corn-based poultry feed.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 416
Author(s):  
Mostafa El Khomsi ◽  
Hamada Imtara ◽  
Mohammed Kara ◽  
Anouar Hmamou ◽  
Amine Assouguem ◽  
...  

Anchusa italica Retz has been used for a long time in phytotherapy. The aim of the present study was to determine the antioxidant and antibacterial activities of extracts from the leaves and roots of Anchusa italica Retz. We first determined the content of phenolic compounds and flavonoids using Folin–Ciocalteu reagents and aluminum chloride (AlCl3). The antioxidant activity was determined using three methods: reducing power (FRAP), 2.2-diphenyl-1-picrylhydrazyl (DPPH), total antioxidant capacity (TAC). The antimicrobial activity was investigated against four strains of Escherichia coli, two strains of Klebsiella pneumoniae and coagulase-negative Staphylococcus, and one fungal strain of Candida albicans. The results showed that the root extract was rich in polyphenols (43.29 mg GAE/g extract), while the leave extract was rich in flavonoids (28.88 mg QE/g extract). The FRAP assay showed a strong iron reduction capacity for the root extract (IC50 of 0.11 µg/mL) in comparison to ascorbic acid (IC50 of 0.121 µg/mL). The DPPH test determined an IC50 of 0.11 µg/mL for the root extract and an IC50 of 0.14 µg/mL for the leaf extract. These values are low compared to those for ascorbic acid (IC50 of 0.16 µg/mL) and BHT (IC50 0.20 µg/mL). The TAC values of the leaf and root extracts were 0.51 and 0.98 mg AAE/g extract, respectively. In vitro, the extract showed inhibitory activity against all strains studied, with diameters of zones of inhibition in the range of 11.00–16.00 mm for the root extract and 11.67–14.33 mm for the leaf extract. The minimum inhibitory concentration was recorded for the leaf extract against E. coli (ATB:57), corresponding to 5 mg/mL. Overall, this research indicates that the extracts of Anchusa italica Retz roots and leaves exert significant antioxidant and antibacterial activities, probably because of the high content of flavonoids and polyphenols.


2022 ◽  
Author(s):  
Sania Naz ◽  
Anila Sajjad ◽  
Joham Ali ◽  
MUHAMMAD ZIA

Comparative nutritional analysis of citrus varieties cultivated in Pakistan has not been reported. Citrus is consumed all over the world due to its taste and also has pharmacological components. The present investigation evaluated the antioxidant, reducing power, total flavonoids and phenolics, DPPH free radical scavenging, protein kinase inhibition, and the antimicrobial activities of eight Pakistani citrus varieties. Grapefruit showed maximum total antioxidant potential (77 µg AAE/100 mg), followed by Kinnow and Shakri. Khatai showed maximum reducing power potential (69.6 µg AAE/100 mg) while Shakri and Grapefruit trailed it. All the varieties showed significant DPPH free radical scavenging activity. Maximum total phenolics in citrus juice were found in Shakri and Kinnow; 26.2 and 25.9 µg GAE/100mg, respectively. Variation in total flavonoids content was observed as Kinnow>Grapefruit>Shakri>Khatai. All the citrus juices showed mild to moderate antibacterial activity, while Mosambi and Malta contained potent antifungal components. HPLC analysis of citrus juices revealed that catechin was present in all citrus genotypes except Kinnow. The study concludes that citrus juices contain strong antioxidative potential, bear protein kinase inhibitors and can be used as cancer chemoprevention and supportive nutrition.


Author(s):  
Rania B. Bakr ◽  
Nadia A.A. Elkanzi

Background & objectives: 1,2-thiazine and pyridine heterocycles drew much attention due to their biological activities including antioxidant activity. Based upon fragment based drug design, novel pyrido[1,2]thiazines 9a-c, thiazolidinopyrido[1,2]thiazines 10a-c and azetidinopyrido[1,2]thiazines 11a-c were designed and prepared. Methods: These novel derivatives 9a-c, 10a-c and 11a-c were subjected to screening for their antioxidant activity via various assays as DPPH radical scavenging potential, reducing power assay and metal chelating potential. Results: All the assayed derivatives exhibited excellent antioxidant potential and the tested compounds 9a, 9b, 10a, 10b, 11a and 11b exhibited higher DPPH scavenging potential (EC50 = 32.7, 53, 36.1, 60, 40.6 and 67 µM, respectively) than ascorbic acid (EC50 = 86.58 µM). While targets 9a, 10a and 11a (RP50 = 52.19, 59.16 and 52.25 µM, respectively) exhibited better reducing power than the ascorbic acid (RP50 = 84.66 µM). Computational analysis had been utilized to prophesy the bioactivity and molecular properties of the target compounds. Conclusion: To predict the binding manner of the novel derivatives as antioxidants, in-silico docking study had been performed to all the newly prepared compounds inside superoxide dismutase (SOD) and catalase (CAT) active site. The most active antioxidant candidate 9a (EC50 = 32.7 µM, RP50 = 52.19 µM) displayed excellent binding with Lys134 amino acid residing at Cu-Zn loop of SOD with binding energy score = -7.54 Kcal/mol thereby increase SOD activity and decrease reactive oxygen species.


Sign in / Sign up

Export Citation Format

Share Document