resistance breeding
Recently Published Documents


TOTAL DOCUMENTS

582
(FIVE YEARS 254)

H-INDEX

32
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Juanita Engelbrecht ◽  
Tuan A. Duong ◽  
Trudy Paap ◽  
Joseph Michael Hulbert ◽  
Juanita Joyce Hanneman ◽  
...  

Phytophthora cinnamomi is the causal agent of root rot, canker and dieback of thousands of plant species around the globe. This oomycete not only causes severe economic losses to forestry and agricultural industries, but also threatens the health of various plants in natural ecosystems. In this study, 380 isolates of P. cinnamomi from four avocado production areas and two regions of natural vegetation in South Africa were investigated using 15 microsatellite markers. These populations were found to have a low level of genetic diversity and consisted of isolates from three lineages. Shared genotypes were detected between isolates from avocado orchards and natural vegetation, indicating the movement of isolates between these areas. The population from the Western Cape natural vegetation had the highest genotypic diversity and unique alleles, indicating this could be the point of introduction of P. cinnamomi to South Africa. Index of association analysis suggested that five out of six populations were under linkage disequilibrium suggesting a clonal mode of reproduction whereas genotypes sampled from a recently established avocado orchard in the Western Cape were derived from a randomly recombined population. This study provided novel insights on the genetic diversity and spread of P. cinnamomi in South Africa. It also reported on the predominance of triploidy in natural occurring populations and provided evidence for recombination of P. cinnamomi for the first time. The presence of two dominant genotypes in all avocado production areas in South Africa highlight the importance of considering them in disease management and resistance breeding programmes.


Author(s):  
Yan Zhong ◽  
Zhao Chen ◽  
Zong-Ming Cheng

AbstractIn this study, genome-wide identification, phylogenetic relationships, duplication time and selective pressure of the NBS-LRR genes, an important group of plant disease-resistance genes (R genes), were performed to uncover their genetic evolutionary patterns in the six Prunus species. A total of 1946 NBS-LRR genes were identified; specifically, 589, 361, 284, 281, 318, and 113 were identified in Prunus yedoensis, P. domestica, P. avium, P. dulcis, P. persica and P. yedoensis var. nudiflora, respectively. Two NBS-LRR gene subclasses, TIR-NBS-LRR (TNL) and non-TIR-NBS-LRR (non-TNL), were also discovered. In total, 435 TNL and 1511 non-TNL genes were identified and could be classified into 30/55/75 and 103/158/191 multi-gene families, respectively, according to three different criteria. Higher Ks and Ka/Ks values were detected in TNL gene families than in non-TNL gene families. These results indicated that the TNL genes had more members involved in relatively ancient duplications and were affected by stronger selection pressure than the non-TNL genes. In general, the NBS-LRR genes were shaped by species-specific duplications, and lineage-specific duplications occurred at recent and relatively ancient periods among the six Prunus species. Therefore, different duplicated copies of NBS-LRRs can resist specific pathogens and will provide an R-gene library for resistance breeding in Prunus species.


2022 ◽  
Author(s):  
Yingying Fan ◽  
Ruili Zhang ◽  
Xiaoqin Liu ◽  
Yushan Ma ◽  
Yan Wang ◽  
...  

Abstract BackgroundBlack spot disease, caused by Alternaria altrenata, is one of the most destructive diseases of jujube worldwide. To better understand the resistance mechanisms of jujube to A. altrenata infection to be able to improve disease control and resistance breeding. Two different cultivars, Zizyphus jujuba Mill. var. Jun jujube (susceptible) and Zizyphus jujuba Mill. var. Hui jujube (resistant), were tested. ResultsIn this study, we identified 2235 differentially expressed genes (DEGs) in the disease-resistant cultivar and 4958 in the susceptible cultivar. To better understand these DEGs, the datasets were analyzed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genome (KEGG) database. Most of them were associated with plant phytohormone synthesis and signal transduction, flavonoid synthesis, and glutathione metabolism. The expression of 6 DEGs associated with disease resistance were detected by real time-quantitative polymerase chain reaction (RT-qPCR), consistent with the results of Illumina transcriptome sequencing. Moreover, the expression level of the six DEGs differently in Jun jujube and Hui jujube, verified they are defense response factors. ConclusionsThe present study identified several candidate resistance genes and signal transduction pathways that may contribute to black spot disease resistance in jujube, which will assist the investigation of resistance mechanisms in the response of jujube to A. altrenata infection.


Horticulturae ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 66
Author(s):  
Hui Zhang ◽  
Xiaochao Ma ◽  
Xitong Liu ◽  
Shifan Zhang ◽  
Fei Li ◽  
...  

European fodder turnips (Brassica rapa ssp. rapifera) were identified as sources of clubroot resistance (CR) and have been widely used in Brassica resistance breeding. An F2 population derived from a cross between a resistant turnip and a susceptible Chinese cabbage was used to determine the inheritance and locating the resistance Quantitative Trait Loci (QTLs). The parents showed to be very resistant/susceptible to the field isolates (pathotype 4) of clubroot from Henan in China. After inoculation, 27 very resistant or susceptible individuals were selected to construct bulks, respectively. Next-generation-sequencing-based Bulk Segregant Analysis Sequencing (BSA-Seq) was used and located resistance QTL on chromosome A03 (3.3–7.5 Mb) and A08 (0.01–6.5 Mb), named Bcr1 and Bcr2, respectively. Furthermore, an F3 population including 180 families derived from F2 individuals was phenotyped and used to verify and narrow candidate regions. Ten and seven Kompetitive Allele-Specific PCR (KASP) markers narrowed the target regions to 4.3–4.78 Mb (A03) and 0.02–0.79 Mb (A08), respectively. The phenotypic variation explained (PVE) of the two QTLs were 33.3% and 13.3% respectively. The two candidate regions contained 99 and 109 genes. In the A03 candidate region, there were three candidate R genes, namely Bra006630, Bra006631 and Bra006632. In the A08 candidate region, there were two candidate R genes, namely Bra030815 and Bra030846.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 156
Author(s):  
Feiying Zhu ◽  
Zhiwei Wang ◽  
Yong Fang ◽  
Jianhua Tong ◽  
Jing Xiang ◽  
...  

Fusarium wilt disease is one of the major diseases causing a decline in watermelon yield and quality. Researches have informed that phytohormones play essential roles in regulating plants growth, development, and stress defendants. However, the molecular mechanism of salicylic acid (SA), jasmonic acid (JA), and abscisic acid (ABA) in resistance to watermelon Fusarium wilt remains unknown. In this experiment, we established the SA, JA, and ABA determination system in watermelon roots, and analyzed their roles in against watermelon Fusarium wilt compared to the resistant and susceptible varieties using transcriptome sequencing and RT-qPCR. Our results revealed that the up-regulated expression of Cla97C09G174770, Cla97C05G089520, Cla97C05G081210, Cla97C04G071000, and Cla97C10G198890 genes in resistant variety were key factors against (Fusarium oxysporum f. sp. Niveum) FON infection at 7 dpi. Additionally, there might be crosstalk between SA, JA, and ABA, caused by those differentially expressed (non-pathogen-related) NPRs, (Jasmonate-resistant) JAR, and (Pyrabactin resistance 1-like) PYLs genes, to trigger the plant immune system against FON infection. Overall, our results provide a theoretical basis for watermelon resistance breeding, in which phytohormones participate.


2022 ◽  
Vol 12 ◽  
Author(s):  
Yijing Gao ◽  
Shan Zhou ◽  
Yuxin Huang ◽  
Baoqing Zhang ◽  
Yuhui Xu ◽  
...  

Sugarcane is one of the most important industrial crops globally. It is the second largest source of bioethanol, and a major crop for biomass-derived electricity and sugar worldwide. Smut, caused by Sporisorium scitamineum, is a major sugarcane disease in many countries, and is managed by smut-resistant varieties. In China, smut remains the single largest constraint for sugarcane production, and consequently it impacts the value of sugarcane as an energy feedstock. Quantitative trait loci (QTLs) associated with smut resistance and linked diagnostic markers are valuable tools for smut resistance breeding. Here, we developed an F1 population (192 progeny) by crossing two sugarcane varieties with contrasting smut resistance and used for genome-wide single nucleotide polymorphism (SNP) discovery and mapping, using a high-throughput genotyping method called “specific locus amplified fragment sequencing (SLAF-seq) and bulked-segregant RNA sequencing (BSR-seq). SLAF-seq generated 148,500 polymorphic SNP markers. Using SNP and previously identified SSR markers, an integrated genetic map with an average 1.96 cM marker interval was produced. With this genetic map and smut resistance scores of the F1 individuals from four crop years, 21 major QTLs were mapped, with a phenotypic variance explanation (PVE) > 8.0%. Among them, 10 QTLs were stable (repeatable) with PVEs ranging from 8.0 to 81.7%. Further, four QTLs were detected based on BSR-seq analysis. aligning major QTLs with the genome of a sugarcane progenitor Saccharum spontaneum, six markers were found co-localized. Markers located in QTLs and functional annotation of BSR-seq-derived unigenes helped identify four disease resistance candidate genes located in major QTLs. 77 SNPs from major QTLs were then converted to Kompetitive Allele-Specific PCR (KASP) markers, of which five were highly significantly linked to smut resistance. The co-localized QTLs, candidate resistance genes, and KASP markers identified in this study provide practically useful tools for marker-assisted sugarcane smut resistance breeding.


2022 ◽  
Vol 23 (1) ◽  
pp. 508
Author(s):  
Jinlong Zhang ◽  
Mingxia Zhou ◽  
Wei Liu ◽  
Jiajun Nie ◽  
Lili Huang

Kiwifruit canker, caused by Pseudomonas syringae pv. actinidiae (Psa), is a destructive pathogen that globally threatens the kiwifruit industry. Understanding the molecular mechanism of plant-pathogen interaction can accelerate applying resistance breeding and controlling plant diseases. All known effectors secreted by pathogens play an important role in plant-pathogen interaction. However, the effectors in Psa and their function mechanism remain largely unclear. Here, we successfully identified a T3SS effector HopAU1 which had no virulence contribution to Psa, but could, however, induce cell death and activate a series of immune responses by agroinfiltration in Nicotiana benthamiana, including elevated transcripts of immune-related genes, accumulation of reactive oxygen species (ROS), and callose deposition. We found that HopAU1 interacted with a calcium sensing receptor in N. benthamiana (NbCaS) as well as its close homologue in kiwifruit (AcCaS). More importantly, silencing CaS by RNAi in N. benthamiana greatly attenuated HopAU1-triggered cell death, suggesting CaS is a crucial component for HopAU1 detection. Further researches showed that overexpression of NbCaS in N. benthamiana significantly enhanced plant resistance against Sclerotinia sclerotiorum and Phytophthora capsici, indicating that CaS serves as a promising resistance-related gene for disease resistance breeding. We concluded that HopAU1 is an immune elicitor that targets CaS to trigger plant immunity.


2021 ◽  
Author(s):  
Qinghua Lu ◽  
Xiangwen Luo ◽  
Xiao Yang ◽  
Tong Zhou ◽  
Yu Zhang ◽  
...  

Abstract Background: Vacuolar ATPases (v-ATPases) are proton pumps for proton translocation across membranes that utilize energy derived from ATP hydrolysis; Previous research revealed Osv-ATPases mediates phytohormes levels and resistance in rice. Osv-ATPase subunit d (Osv-ATPase d) is part of an integral, membrane-embedded V0 complex of V-ATPases complex, whether Osv-ATPase d involves in phytohormes biosynthesis and resistance in rice remains unknown.Finding: The knockout mutant line (line 5) of Osv-ATPase d was generated using the CRISPR/Cas9 system, mutation of Osv-ATPase d did not show any detrimental effect on plant growth or yield productivity. Transcriptomic results showed Osv-ATPase d probably involved in mediating the biosynthesis of plant hormones and resistance in rice. Mutation of Osv-ATPase d significantly increased JA and ABA biosynthesis than wild type. Compared to wild type, mutation of Osv-ATPase d increased the resistance against Southern rice black-streaked dwarf virus (SRBSDV), however, decreased the resistance against Rice stripe virus (RSV) in rice. Conclusion: Taken together, our data reveal the Osv-ATPase d mediates phytohormone biosynthesis and virus resistance in rice, which can be selected as a potential target for resistance breeding in rice.


2021 ◽  
Author(s):  
Ying Wang ◽  
Cheng Wan ◽  
Leijia Li ◽  
Zhun Xiang ◽  
Jihong Wang ◽  
...  

Abstract Fine varieties of the Yunwu Tribute Tea (Camellia Sinensis (L.) Kuntze var. niaowangensis Q. H. Chen) are distributed on the Yunwu Mountain, Guiding County, Guizhou province, China. Cold stress usually occurs in winter and is one of the most significant environmental factors restricting the growth of this plant as well as its geographical distribution. However, only few systematic studies have examined the molecular mechanism of cold tolerance in the Yunwu Tribute Tea. Hence, in this study, Illumina HiSeq technology was applied to investigate the cold-tolerance mechanism and for this purpose, cDNA libraries were obtained from two groups of samples namely, the cold-treated group (DW) and the control group (CK). A total of 185,973 unigenes were produced from 511,987 assembled transcripts and among these, 16,020 differentially expressed genes (DEGs) (corrected p-value <0.01, |log2(fold change)| >3), including 9,606 upregulated and 6,414 downregulated genes, were obtained. Moreover, the antioxidant enzyme system, plant hormone signal transduction, proline metabolism, tyrosine metabolism pathway, and transcription factors were analyzed and based on the results, a series of candidate genes related to cold stress were screened out and discussed. The physiological indexes related to the low temperature response were tested, along with five DEGs which were validated by quantitative real-time PCR. For this study, it is expected that the results of the transcriptome sequence of Yunwu Tribute Tea will provide valuable clues for genetic studies while helping to screen candidate genes for cold-resistance breeding in tea plants.


Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 62
Author(s):  
Jun Xu ◽  
Ningyuan Zhang ◽  
Ke Wang ◽  
Qianqian Xian ◽  
Jingping Dong ◽  
...  

Cucumber (Cucumis sativus L.) is an important vegetable crop worldwide, and Fusarium wilt (FW), caused by Fusarium oxysporum f. sp. cucumerinum (Foc), severely restricts cucumber growth and yield. Accumulating lines of evidence indicate that chitinases play important roles in attacking the invading fungal pathogens through catalyzing their cell wall degradation. Here, we identified the chitinase (Chi) genes in cucumber and further screened the FW-responsive genes via a comparative transcriptome analysis and found that six common genes were predominantly expressed in roots but also significantly upregulated after Foc infection. Expression verification further conformed that Chi2 and Chi14 were obviously induced by Foc as well as by hormone treatments, compared with the controls. The purified Chi2 and Chi14 proteins significantly affected the growth of Foc in vitro, compared with the controls. Knockdown of Chi2 in cucumber by virus-induced gene silencing (VIGS) increased susceptibility to FW, compared with the Chi14-silenced and control plants, and silencing of Chi2 drastically impaired gene activation in the jasmonic acid pathway, suggesting that the Chi2 gene might play positive roles in cucumber FW defense and, therefore, can provide a gene resource for developing cucumber-FW-resistance breeding programs.


Sign in / Sign up

Export Citation Format

Share Document