excavation process
Recently Published Documents


TOTAL DOCUMENTS

181
(FIVE YEARS 64)

H-INDEX

5
(FIVE YEARS 3)

2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Dongshuang Liu ◽  
Xinrong Liu ◽  
Zuliang Zhong ◽  
Yafeng Han ◽  
Fei Xiong ◽  
...  

Due to the complex construction conditions of shield tunnels, ground disturbance is inevitable during the construction process, which leads to surface settlement and, in serious cases, damage to surrounding buildings (structures). Therefore, it is especially important to effectively control the constructive settlement of subway tunnels when crossing settlement-sensitive areas such as high-density shantytowns. Based on the project of Wuhan Metro Line 8 Phase I, the shield of Huangpu Road Station-Xujiapang Road Station interval crossing high-density shantytowns, we study the disturbance control technology of oversized diameter mud and water shield crossing unreinforced settlement-sensitive areas during the construction process. By optimizing the excavation parameters and evaluating the ground buildings, the excavation process can be monitored at the same time, and the water pressure, speed, and tool torque required during the excavation during the construction process can be finely adjusted; the control of tunneling process parameters can provide reference and basis for analyzing the construction control of large-diameter shield through old shantytowns.


2021 ◽  
Vol 12 (1) ◽  
pp. 39
Author(s):  
Jianxiu Wang ◽  
Ansheng Cao ◽  
Zhao Wu ◽  
Zhipeng Sun ◽  
Xiao Lin ◽  
...  

The temporal and spatial effects of a complicated excavation process are vital for an ultra-shallow buried large-span double-arch tunnel excavated under an expressway in service. Numerical simulations are urgent and necessary to understand the effect of the total construction process. Taking Xiamen Haicang tunnel as a research object, the total excavation process of three pilot tunnels and the three-bench reserved core soil method of an ultra-shallow buried large-span double-arch tunnel with a fault fracture zone under an expressway was simulated using software FLAC3D. The deformation of the surface, surrounding rock, underground pipelines, tunnel support structure and partition wall of the three pilot tunnels and the main tunnel was analyzed, and the dangerous areas and time nodes were obtained. When the tunnel was excavated to the fault fracture zone, the deformation of the surface and surrounding rock increased significantly. The rock and soil within 20 m behind the excavation surface of the pilot tunnel were greatly disturbed by the excavation. During the excavation of the main tunnel, the horizontal displacement of the middle partition wall moved slightly towards the main tunnel excavated first. The research results can provide a reference for the construction design of double-arch tunnels.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7897
Author(s):  
Andrei Andraș ◽  
Sorin Mihai Radu ◽  
Ildiko Brînaș ◽  
Florin Dumitru Popescu ◽  
Daniela Ioana Budilică ◽  
...  

Breakdown of stackers and excavators in opencast mines is possible because of operating, manufacturing and structural causes, and it produces high financial losses. These can be prevented by using various measures, including analyses and strength tests, with computerized modeling and simulation using FEA or other techniques being implemented in the recent years. In this paper a fatigue study is conducted on the boom of a BWE. Based on a computer model of the boom previously developed in SOLIDWORKS by our author team, first the modal analysis is conducted for three positions of the boom by studying the frequency response during the excavation process. This is followed by the time response determination corresponding to the maximum displacement frequency, in order to assess the stress during the excavation process, which causes the material fatigue in the boom structure. It was found that the maximum displacements appear when the BWE boom operates in a horizontal position. The aim was to estimate the period of time to failure in order to prevent unwanted accidents, and to develop a method that is applicable to any surface mining or industrial machine with similar structure.


Author(s):  
Anas Ahmed Abdelbagi Hamad ◽  
◽  
Azri Ikhwan Lokman ◽  
Lim Qian Xi ◽  
Mohammad Raziq Fakhrullah ◽  
...  

Excavation is an important part of any construction project whereby removing earth to form cavity in the ground. This paper mainly focuses on cut and fill excavation by identify the cost of labor, material and equipment. Besides that, this paper aims to have better understanding on Bill of Quantity using coding. The method implemented for this study is using GNU Octave, version 6.2.0 and manual calculation to calculate the construction cost incurred during excavation process. Referring to the manual calculation, the overall cost obtained for the project is RM27352.15 whereas using GNU Octave software obtained for the project is RM27352.15. Thus, both GNU Octave software and manual calculation has zero percent difference. Octave is a computer programme that is designed for numerical computations and able to solve linear and nonlinear mathematical problems.


2021 ◽  
Vol 16 (2) ◽  
pp. 203-217
Author(s):  
Nawel Bousbia

Abstract The excavation process of tunnels induces stresses and deformation in the surrounding soil. The method of excavation is one of the major problems related to the safety of the operators and the ground stability during the construction of underground works. So, it is necessary to choose an ideal method to minimize the displacements and stresses induced by tunneling. The main aim of this study is to simulate numerically the effect of different processes of tunneling on ground displacements, the settlements at surface soil and the internal efforts induced in the lining tunnel; in order to select the best process of excavation, which gives us a less effects on displacements generated by tunneling, thus, ensuring the stability and the solidity of the underground constructions. In addition, this study allows us to control and to predict the diverse movements generated by tunneling (displacements, settlements, efforts internes) exclusively for the shallow tunnel nearby to the underground constructions in the urban site. This modeling will be done by employing five different processes for tunnel excavation using the NATM (New Austrian Tunneling Method) method. The first process, the modeling of the excavation tunnel, is done almost in the same way as in reality; the partial face excavation, with seven slices, made by the excavation. The second process, by partial face excavation, is divided into eleven slices, next, we used the partial face excavation by nine slices, and then in thirteen slices. Finally, the dig is made by full-face excavation. The paper contributes to the prediction of the response of the soil environment to tunnel excavation using the NATM method and to minimize the diverse movements generated by tunneling. The appropriately chosen methodology confirms that displacements and subsidence are strongly influenced by the tunneling method. The three-dimensional Finite Elements Method using Plaxis3D program has been applied in the numerical simulation. The study resulted in the recommendation of a process that minimizes the effect of excavation on subsidence and ground displacement for a particular Setiha tunnel.


2021 ◽  
Vol 4 (2) ◽  
pp. 5
Author(s):  
Xiuyong Ni ◽  
Suqin Han ◽  
Peng Li ◽  
Xiwu Wei

In the past, the main method of tunnel excavation in China was drilling and blasting, but the biggest shortcoming of the traditional drilling and blasting method is that it is easy to cause serious overexcavation and underexcavation. At the same time, the operation cycle time of this method is long, which leads to a serious waste of resources. Not only that, a large number of toxic gases and dust produced after blasting also do harm to the health of construction workers. So this is an urgent need for a new construction technology to solve this worldwide problem. In this situation, the leading experts in the field of tunnel, "The survey and design master of China" Shi Yuxin, Liu Pei, and well known expert in explosion field, yan-sheng ding, professor Chen Chengguang and Gu Yicheng, the experts group, cooperate with The Fifth Branch of China Railway 18th Bureau in northwest project management department, developed a new technology. This technology has passed the appraisal of scientific and technological achievements organized by Tianjin Science and Technology Commission, which is shaped hydraulic smooth blasting technology. The comprehensive evaluation of the technology is "international leading" level.This paper is mainly aimed at the drawbacks of drilling and blasting construction,combined with the author's cognition and discussion on the introduction of the new technology of cumulative hydraulic blasting and the practical application effect in the tunnel excavation process of the fourth company of China Railway 14th Bureau Group in the second division of the 9th bid section of Zhangjihuai Railway in Huainan Province.


2021 ◽  
Vol 11 (21) ◽  
pp. 10488
Author(s):  
Mingwei Guo ◽  
Xuechao Dong ◽  
Jiahang Li

End resistance is a dominant variable in the sinking process of super-sized caisson foundation, which is of great importance to the safe sinking of the caisson foundation. Based on soil excavation process of super large caisson foundation of the main tower of Changtai Yangtze River Bridge, the distribution characteristics and variation of earth pressure under the foot blade was analyzed using 3D finite element method at the first stage of soil excavation. Furthermore, the earth pressure was monitored in real time during soil excavation in order to analyze the influence of soil excavation process on the distribution of earth pressure. The analysis results of engineering practice showed that in the process of soil excavation from inner area to outer area, the end resistance of inner bulkhead and inner partition walls decreased, while the end resistance of outer bulkhead and outer partition walls gradually increased till the soil reached the failure state in the outer bulkhead area. The distribution characteristics and variation of the earth pressure can really reflect overall stress state of caisson foundation, which helps guide the safe sinking by soil excavation.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jun Yu ◽  
Qiang Zhang ◽  
Weiya Xu ◽  
Rubin Wang ◽  
Han Zhang

We aim to understand the relaxation of columnar joint rock masses during the excavation process of the diversion tunnel of the Baihetan hydropower station. This paper inverts the deformation parameters of the relaxed columnar joint rock based on the displacement monitoring data, and introduces a relaxation factor to describe the deterioration degree of anisotropic parameters of the relaxed columnar jointed rock. The equivalent strain is proposed as the criterion of unloading relaxation and the threshold is also given. Based on the software Flac3d, a program for calculating anisotropic elastoplastic model is developed. The distribution of the relaxation zone of the diversion tunnel after excavation is simulated, and compared with the results of the acoustic detection to verify the correctness and rationality of the program, which can provide a necessary reference for the design and construction of hydropower projects.


Sign in / Sign up

Export Citation Format

Share Document