machine tool structures
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 11)

H-INDEX

15
(FIVE YEARS 1)

2020 ◽  
Vol 14 (3) ◽  
pp. 386-398
Author(s):  
Bernd W. Peukert ◽  
◽  
Andreas Archenti

The manufacturing accuracy of modern machine tools strongly depends on the placement of the machine tool structure on the factory’s foundation. Civil engineering knows a variety of foundation types and factory planners must carefully consider local circumstances such as the size and the properties of the regional subsoil as well as the individual requirements of machine tools. Two of the major reasons for the effect of the foundation onto the machining accuracy are the added stiffness and the increased mass from the installation site’s foundation. A change of these characteristics greatly affects the dynamic characteristics of the overall machine tool and therefore also the machining dynamics. Although some general rules and guidelines exist for the design of foundations, their dynamic interaction with the supported precision machine tool structures is not well understood yet. This paper presents a series of measurements on two different types of machine tool foundations and highlights the characteristic differences in their dynamic interaction. It also proposes a novel approach to validate the conclusions with the use of foundation and machine tool scale models. These results can serve factory planners of precision targeting shop floors as a valuable guide for deciding on a suitable foundation for lowering the individual machine tool vibrations and/or reducing the dynamic interaction between closely located machine tools.


The productivity and accuracy of machine tools now became most significant as the cutting conditions changes continuously. Therefore to withstand against these cutting conditions the machine tool structural material must have higher stiffness and damping. This review deals with various research works to study the stiffness and damping of epoxy granite or polymer concrete. It is reported that the epoxy granite shows improved damping and high strength to weight ratio than that of conventional machine tool structures of steel and cast iron.


Author(s):  
Shanmugam Chinnuraj ◽  
PR Thyla ◽  
S Elango ◽  
Prabhu Raja Venugopal ◽  
PV Mohanram ◽  
...  

Machine tools are used to manufacture components with desired size, shape, and surface finish. The accuracy of machining is influenced by stiffness, structural damping, and long-term dimensional stability of the machine tool structures. Components machined using such machines exhibit more dimensional variations because of the excessive vibration during machining at higher speeds. Compared to conventional materials like cast iron, stone-based polymer composites such as epoxy granite have been found to provide improved damping characteristics, by seven to ten folds, due to which they are being considered for machine tool structures as alternate materials. The stiffness of structures made of epoxy granite can be enhanced by reinforcing with structural steel. The current work highlights the design and analysis of different steel reinforcements in the lathe bed made of the epoxy granite composite to achieve equivalent stiffness to that of cast iron bed for improved static and dynamic performances of the CNC lathe. A finite element model of the existing the cast iron bed was developed to evaluate the static (torsional rigidity) and dynamic characteristics (natural frequency) and the results were validated using the experimental results. Then finite element models of five different steel reinforcement designs of the epoxy granite bed were developed, and their static and dynamic behaviors were compared with the cast iron bed through numerical simulation using finite element analysis. The proposed design (Design-5) of the epoxy granite bed is found to have an improvement in dynamic characteristics by 4–10% with improved stiffness and offers a mass reduction of 22% compared to the cast iron bed, hence it can be used for the manufacture of the CNC lathe bed and other machine tool structures for enhanced performance.


Author(s):  
Prabhu Raja Venugopal ◽  
P Dhanabal ◽  
PR Thyla ◽  
S Mohanraj ◽  
Mahendrakumar Nataraj ◽  
...  

The structural vibration in conventional machine tools which are generally made of cast iron may lead to poor surface finish of the machined components. This has led to the investigations on alternative materials for machine tool structures such as concrete, polymer concrete and epoxy granite which have higher damping properties but lesser Young's modulus. However, higher static stiffness with higher damping is essential for improving the static and dynamic characteristics of machine tool structures. Hence, this work focuses on replacing the vertical machining centre base made of cast iron with steel reinforced epoxy granite to improve the structural static stiffness. A finite element model of the above base is developed and validated against the experimental data obtained using modal analysis. The validated numerical approach is applied for investigating the seven progressive design configurations of base reinforced with steel. It is found that the epoxy granite base of Design configuration-7 with L-channels has significantly reduced the deformation by 56 and 36% considering milling and drilling operations, respectively, in comparison to cast iron base. Further, the natural frequencies of the above configuration are higher in all the modes (by more than 50%) under consideration than those of the existing cast iron structure. Therefore, the proposed configuration of base is a viable alternative for the existing base in order to achieve higher structural damping. The novelty of the present work is the design of epoxy granite vertical machining centre base using steel reinforcements to improve structural rigidity with ease of manufacturing.


2019 ◽  
Vol 109 (01-02) ◽  
pp. 17-23
Author(s):  
D. Albrecht ◽  
T. Stehle ◽  
H.-C. Möhring

Neue Entwicklungen aus dem Bauwesen haben die Eigenschaften von mineralisch gebundenem Beton verbessert, was diesen Werkstoff für die Herstellung von Werkzeugmaschinengestellen interessant macht. Dieser Beton zeichnet sich vor allem durch deutlich höhere Festigkeitswerte als konventioneller Beton aus. Die Tatsache, dass der Beton wassergebunden ist, macht diesen jedoch angreifbar gegenüber den bei spanenden Werkzeugmaschinen zum Einsatz kommenden Medien wie Hydrauliköle oder Kühlschmierstoffe.   Current developments in civil engineering improved the features of mineral-bound concrete, which makes the possible use of this type of concrete also interesting for the production of machine tool structures. This type of concrete is characterised by increased strength properties compared to conventional concrete. The fact that this concrete is water-bound makes it vulnerable to process media such as hydraulic oil or cooling lubricant which are often in use for machining.


Sign in / Sign up

Export Citation Format

Share Document