total bacterial community
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 11)

H-INDEX

15
(FIVE YEARS 1)

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262425
Author(s):  
Kahui Lim ◽  
Matthew Rolston ◽  
Samantha Barnum ◽  
Cara Wademan ◽  
Harold Leverenz

In this study, we examined the total bacterial community associated with ureolytic biomineralization from urine drainage systems. Biomineral samples were obtained from 11 California Department of Transportation public restrooms fitted with waterless, low-flow, or conventional urinals in 2019. Following high throughput 16S rRNA Illumina sequences processed using the DADA2 pipeline, the microbial diversity assessment of 169 biomineral and urine samples resulted in 3,869 reference sequences aggregated as 598 operational taxonomic units (OTUs). Using PERMANOVA testing, we found strong, significant differences between biomineral samples grouped by intrasystem sampling location and urinal type. Biomineral microbial community profiles and alpha diversities differed significantly when controlling for sampling season. Observational statistics revealed that biomineral samples obtained from waterless urinals contained the largest ureC/16S gene copy ratios and were the least diverse urinal type in terms of Shannon indices. Waterless urinal biomineral samples were largely dominated by the Bacilli class (86.1%) compared to low-flow (41.3%) and conventional samples (20.5%), and had the fewest genera that account for less than 2.5% relative abundance per OTU. Our findings are useful for future microbial ecology studies of urine source-separation technologies, as we have established a comparative basis using a large sample size and study area.


Author(s):  
Sameh H. Youseif ◽  
Fayrouz H. Abd El-Megeed ◽  
Ethan A. Humm ◽  
Maskit Maymon ◽  
Akram H. Mohamed ◽  
...  

Bacteria colonizing the rhizosphere, a narrow zone of soil surrounding the root system, are known to have beneficial effects in improving the growth and stress tolerance of plants. However, most bacteria in natural environments, especially those in rhizosphere soils, are recalcitrant to cultivation using traditional techniques, and thus their roles in soil health and plant growth remain unexplored.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Robert M. Morris ◽  
Rachel L. Spietz

The SUP05 clade of gammaproteobacteria (Thioglobaceae) comprises both primary producers and primary consumers of organic carbon in the oceans. Host-associated autotrophs are a principal source of carbon and other nutrients for deep-sea eukaryotes at hydrothermal vents, and their free-living relatives are a primary source of organic matter in seawater at vents and in marine oxygen minimum zones. Similar to other abundant marine heterotrophs, such as SAR11 and Roseobacter, heterotrophic Thioglobaceae use the dilute pool of osmolytes produced by phytoplankton for growth, including methylated amines and sulfonates. Heterotrophic members are common throughout the ocean, and autotrophic members are abundant at hydrothermal vents and in anoxic waters; combined, they can account for more than 50% of the total bacterial community. Studies of both cultured and uncultured representatives from this diverse family are providing novel insights into the shifting biogeochemical roles of autotrophic and heterotrophic bacteria that cross oxic–anoxic boundary layers in the ocean. Expected final online publication date for the Annual Review of Marine Science, Volume 14 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Author(s):  
Yinting Ding ◽  
Ruteng Wei ◽  
Lin Wang ◽  
Chenlu Yang ◽  
Hua Wang ◽  
...  

Abstract The structural and functional diversity of the microbial ecosystem on the grape surface affect the health of berries and the flavor of wines, which are also changed by many factors such as climate, weather conditions, agronomic practices, and physiological development. To understand and explore the natural characteristics of grape surface microbial ecosystem during ripening, the species composition and dynamics of fungi and bacteria communities on the skin of Ecolly grape were determined by Illumina Novaseq platform sequencing. The results showed that 2146 fungal OTUs and 4175 bacterial OTUs were obtained, belonging to 4 fungal phyla and 20 bacterial phyla, and Shannon index indicated that the fungus community had the highest species diversity at the véraison stage and the bacteria community at the harvest stage. The four dominant fungal genera during grape ripening included Alternaria, Naganishia, Filobasidium, and Aureobasidium, which accounted for 82.8% of the total fungal community, and the dominant bacterial genera included Sphingomonas, Brevundimonas, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, and Massilia, which accounted for 77.9% of the total bacterial community. The species richness and diversity in the grape microbial ecosystem are constantly changing during the maturation stages, and there are complex interactions and correlations between related core microbial genera, which may have an important impact on the function and ecological role of the community. This study provides a basis for understanding the natural characteristics of the microbial ecosystem on the grape surface during the grape ripening, and the sustainable production concept of the microecology driving the viticulture management system.


2021 ◽  
Author(s):  
Linya XU ◽  
Yuanhui LIU ◽  
Kankan ZHAO ◽  
Shan LIU ◽  
Erinne Stirling ◽  
...  

Abstract Earth is the cradle of mankind, but it is impossible for human beings to live in the cradle forever. Sending soil microbial spores through space to foreign planets will be a likely initial process in planet colonization. Periods of hyper-gravity are likely to be a challenge for the candidate microorganisms during their interstellar transportation, raising questions about their survival rates and community-level responses. To address these questions, the impacts of hyper-gravity on soil microbial community composition and activity were tested by applying 1×g or 2500×g centrifugal force to soil for 6 days. The results indicated an increased diversity and absolute abundance of soil total bacterial community and a relatively stable active bacterial community under hyper-gravity condition. Besides, hyper-gravity had no observable effect on the relative abundance of soil microorganisms. These results suggest that soil microorganisms could survive during short periods of hyper-gravity. Our findings represent the first step towards a better understanding of the potential for survival of soil microbiomes during space travel and provide a basis for further interstellar soil research.


Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1488
Author(s):  
Eniko Kubinyi ◽  
Soufiane Bel Rhali ◽  
Sára Sándor ◽  
Attila Szabó ◽  
Tamás Felföldi

Gut microbiota can crucially influence behavior and neurodevelopment. Dogs show unique similarities to humans in their physiology and may naturally develop dementia-like cognitive decline. We assessed 29 pet dogs’ cognitive performance in a memory test and analyzed the bacterial 16S rRNA gene from fecal samples collected right after the behavioral tests. The major phyla identified in the dog microbiomes were Bacteroidetes, Firmicutes, and Fusobacteria, each represented by >20% of the total bacterial community. Fewer Fusobacteria were found in older dogs and better memory performance was associated with a lower proportion of Actinobacteria. Our preliminary findings support the existence of links between gut microbiota, age, and cognitive performance in pet dogs.


2020 ◽  
Vol 96 (5) ◽  
Author(s):  
Tong-tong Liu ◽  
Hong Yang

ABSTRACT Bacterial communities play crucial roles in the biogeochemical cycle of the surface sediments of freshwater lakes, but previous studies on bacterial community changes in this habitat have mostly been based on the total bacterial community (DNA level), while an exploration of the active microbiota at the RNA level has been lacking. Herein, we analysed the bacterial communities in the surface sediments of Lake Taihu at the DNA and RNA levels. Using MiSeq sequencing and real-time quantification, we found that the sequencing and quantitative results obtained at the RNA level compared with the DNA level were more accurate in responding to the spatiotemporal dynamic changes of the bacterial community. Although both sequencing methods indicated that Proteobacteria, Chloroflexi, Acidobacteria, Nitrospirae, Bacteroidetes and Actinobacteria were the dominant phyla, the co-occurrence network at the RNA level could better reflect the close relationship between microorganisms in the surface sediment. Additionally, further analysis showed that Prochlorococcus and Microcystis were the most relevant and dominant genera of Cyanobacteria in the total and active bacterial communities, respectively; our results also demonstrated that the analysis of Cyanobacteria-related groups at the RNA level was more ‘informative’.


2019 ◽  
Vol 8 (1) ◽  
pp. 9
Author(s):  
Jack K. Beltz ◽  
Hayley McMahon ◽  
Isis Torres Nunez ◽  
Anne E. Bernhard

We investigated the impacts of drought on ammonia-oxidizing archaea (AOA) and bacteria (AOB) in a salt marsh and compared the response to the total bacterial community. We analyzed abundance and community composition of amoA genes by QPCR and TRFLP, respectively, in three vegetation zones in 2014 (pre-drought), 2016 (drought), and 2017 (post-drought), and analyzed bacterial 16S rRNA genes by QPCR, TRFLP, and MiSeq analyses. AOA and AOB abundance in the Spartina patens zone increased significantly in 2016, while abundance decreased in the tall S. alterniflora zone, and showed little change in the short S. alterniflora zone. Total bacterial abundance declined annually in all vegetation zones. Significant shifts in community composition were detected in 2016 in two of the three vegetation zones for AOA and AOB, and in all three vegetation zones for total bacteria. Abundance and community composition of AOA and AOB returned to pre-drought conditions by 2017, while bacterial abundance continued to decline, suggesting that nitrifiers may be more resilient to drought than other bacterial communities. Finding vegetation-specific drought responses among N-cycling microbes may have broad implications for changes in N availability and marsh productivity, particularly if vegetation patterns continue to shift as predicted due to sea level rise.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaoning Gao ◽  
Zilin Wu ◽  
Rui Liu ◽  
Jiayun Wu ◽  
Qiaoying Zeng ◽  
...  

To understand dynamic changes in rhizosphere microbial community in consecutive monoculture, Illumina MiSeq sequencing was performed to evaluate the V3-V4 region of 16S rRNA in the rhizosphere of newly planted and three-year ratooning sugarcane and to analyze the rhizosphere bacterial communities. A total of 126,581 and 119,914 valid sequences were obtained from newly planted and ratooning sugarcane and annotated with 4445 and 4620 operational taxonomic units (OTUs), respectively. Increased bacterial community abundance was found in the rhizosphere of ratooning sugarcane when compared with the newly planted sugarcane. The dominant bacterial taxa phyla were similar in both sugarcane groups. Proteobacteria accounted for more than 40% of the total bacterial community, followed by Acidobacteria and Actinobacteria. The abundance of Actinobacteria was higher in the newly planted sugarcane, whereas the abundance of Acidobacteria was higher in the ratooning sugarcane. Our study showed that Sphingomonas, Bradyrhizobium, Bryobacter, and Gemmatimonas were dominant genera. Moreover, the richness and diversity of the rhizosphere bacterial communities slightly increased and the abundance of beneficial microbes, such as Bacillus, Pseudomonas, and Streptacidiphilus, in ratooning sugarcane were more enriched. With the consecutive monoculture of sugarcane, the relative abundance of functional groups related to energy metabolism, glycan biosynthesis, metabolism, and transcription were overrepresented in ratooning sugarcane. These findings could provide the way for promoting the ratooning ability of sugarcane by improving the soil bacterial community.


Sign in / Sign up

Export Citation Format

Share Document