liver regeneration
Recently Published Documents


TOTAL DOCUMENTS

4006
(FIVE YEARS 543)

H-INDEX

112
(FIVE YEARS 12)

2022 ◽  
Vol 12 ◽  
Author(s):  
Chunliang Xie ◽  
Zhoumei Zhang ◽  
Manyi Yang ◽  
Cha Cao ◽  
Yingjun Zhou ◽  
...  

Emerging evidence indicates that probiotics have been proved to influence liver injury and regeneration. In the present study, the effects of Lactiplantibacillus plantarum AR113 on the liver regeneration were investigated in 70% partial hepatectomy (PHx) rats. Sprague-Dawley (SD) rats were gavaged with L. plantarum AR113 suspensions (1 × 1010 CFU/mL) both before and after partial hepatectomy. The results showed that L. plantarum AR113 administration 2 weeks before partial hepatectomy can accelerate liver regeneration by increased hepatocyte proliferation and tumor necrosis factor-α (TNF-α), hepatocyte growth factor (HGF), and transforming growth factor-β (TGF-β) expression. Probiotic administration enriched Lactobacillus and Bacteroides and depleted Flavonifractor and Acetatifactor in the gut microbiome. Meanwhile, L. plantarum AR113 showed decline of phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidyl serine (PS), and lysophosphatidyl choline (LysoPC) levels in the serum of the rats after the L. plantarum AR113 administration. Moreover, L. plantarum AR113 treated rats exhibited higher concentrations of L-leucine, L-isoleucine, mevalonic acid, and lower 7-oxo-8-amino-nonanoic acid in plasma than that in PHx. Spearman correlation analysis revealed a significant correlation between changes in gut microbiota composition and glycerophospholipid. These results indicate that L. plantarum AR113 is promising for accelerating liver regeneration and provide new insights regarding the correlations among the microbiome, the metabolome, and liver regeneration.


Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 371
Author(s):  
Jorge Gutiérrez Sáenz de Santa María ◽  
Borja Herrero de la Parte ◽  
Gaizka Gutiérrez-Sánchez ◽  
Inmaculada Ruiz Montesinos ◽  
Sira Iturrizaga Correcher ◽  
...  

Liver resection remains the gold standard for hepatic metastases. The future liver remnant (FLR) and its functional status are two key points to consider before performing major liver resections, since patients with less than 25% FLR or a Child–Pugh B or C grade are not eligible for this procedure. Folinic acid (FA) is an essential agent in cell replication processes. Herein, we analyze the effect of FA as an enhancer of liver regeneration after selective portal vein ligation (PVL). Sixty-four male WAG/RijHsd rats were randomly distributed into eight groups: a control group and seven subjected to 50% PVL, by ligation of left portal branch. The treated animals received FA (2.5 m/kg), while the rest were given saline. After 36 h, 3 days or 7 days, liver tissue and blood samples were obtained. FA slightly but significantly increased FLR percentage (FLR%) on the 7th day (91.88 ± 0.61%) compared to control or saline-treated groups (86.72 ± 2.5 vs. 87 ± 3.33%; p < 0.01). The hepatocyte nuclear area was also increased both at 36 h and 7days with FA (61.55 ± 16.09 µm2, and 49.91 ± 15.38 µm2; p < 0.001). Finally, FA also improved liver function. In conclusion, FA has boosted liver regeneration assessed by FLR%, nuclear area size and restoration of liver function after PVL.


2021 ◽  
Author(s):  
Gregor Ortmayr ◽  
Laura Brunnthaler ◽  
David Pereyra ◽  
Heidemarie Huber ◽  
Jonas Santol ◽  
...  

2021 ◽  
Vol 12 (12) ◽  
pp. 1101-1156
Author(s):  
Christopher Hadjittofi ◽  
Michael Feretis ◽  
Jack Martin ◽  
Simon Harper ◽  
Emmanuel Huguet

2021 ◽  
Author(s):  
Saritha Gopal Pandit ◽  
Krishna Prashanth Ramesh Mekala ◽  
Mohankumari H. Puttananjaiah ◽  
Muthukumar Serva Peddha ◽  
Mohan A Dhale

Abstract Talaromyces purpureogenus CFRM02 pigment exhibited antioxidant activity by scavenging free radicals. The alcohol feeding lead to free radical generation causing pathophysiological processes of alcoholic liver disease (ALD) and alcoholic hepatitis. The T. purpureogenus CFRM02 pigment administered to rats ameliorated the ALD by scavenging ROS. The haematological analysis revealed the increased neutrophil circulation. The neutrophil infiltration was observed in the hepatocytes of the rats fed with pigment (600 mg/kg body weight). The increase in number of neutrophils help in the liver regeneration caused by alcoholic hepatitis. The dual mechanism of action of pigment, antioxidant and liver regeneration through neutrophil production is attributed to alleviate the ALD. These results suggested T. purpureogenus CFRM02 pigment represents a novel protective and therapeutic strategy against ALD.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1907
Author(s):  
Yan Li ◽  
Lungen Lu ◽  
Xiaobo Cai

Liver transplantation is the only curative option for end-stage liver disease; however, the limitations of liver transplantation require further research into other alternatives. Considering that liver regeneration is prevalent in liver injury settings, regenerative medicine is suggested as a promising therapeutic strategy for end-stage liver disease. Upon the source of regenerating hepatocytes, liver regeneration could be divided into two categories: hepatocyte-driven liver regeneration (typical regeneration) and liver progenitor cell-driven liver regeneration (alternative regeneration). Due to the massive loss of hepatocytes, the alternative regeneration plays a vital role in end-stage liver disease. Advances in knowledge of liver regeneration and tissue engineering have accelerated the progress of regenerative medicine strategies for end-stage liver disease. In this article, we generally reviewed the recent findings and current knowledge of liver regeneration, mainly regarding aspects of the histological basis of regeneration, histogenesis and mechanisms of hepatocytes’ regeneration. In addition, this review provides an update on the regenerative medicine strategies for end-stage liver disease. We conclude that regenerative medicine is a promising therapeutic strategy for end-stage liver disease. However, further studies are still required.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhipeng Zheng ◽  
Baohong Wang

Diverse liver diseases undergo a similar pathophysiological process in which liver regeneration follows a liver injury. Given the important role of the gut-liver axis in health and diseases, the role of gut microbiota-derived signals in liver injury and regeneration has attracted much attention. It has been observed that the composition of gut microbiota dynamically changes in the process of liver regeneration after partial hepatectomy, and gut microbiota modulation by antibiotics or probiotics affects both liver injury and regeneration. Mechanically, through the portal vein, the liver is constantly exposed to gut microbial components and metabolites, which have immense effects on the immunity and metabolism of the host. Emerging data demonstrate that gut-derived lipopolysaccharide, gut microbiota-associated bile acids, and other bacterial metabolites, such as short-chain fatty acids and tryptophan metabolites, may play multifaceted roles in liver injury and regeneration. In this perspective, we provide an overview of the possible molecular mechanisms by which gut microbiota-derived signals modulate liver injury and regeneration, highlighting the potential roles of gut microbiota in the development of gut microbiota-based therapies to alleviate liver injury and promote liver regeneration.


2021 ◽  
Vol 28 (6) ◽  
pp. 5240-5254
Author(s):  
Noemi Daradics ◽  
Pim B. Olthof ◽  
Andras Budai ◽  
Michal Heger ◽  
Thomas M. van Gulik ◽  
...  

Background: the role of bile acid (BA)-induced farnesoid X receptor (Fxr) signaling in liver regeneration following associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) was investigated in a rat model. Methods: Male Wistar rats underwent portal vein ligation (PVL) (n = 30) or ALPPS (n = 30). Animals were sacrificed pre-operatively and at 24, 48, 72, or 168 h after intervention. Regeneration rate, Ki67 index, hemodynamic changes in the hepatic circulation, and BA levels were assessed. Transcriptome analysis of molecular regulators involved in the Fxr signaling pathway, BA transport, and BA production was performed. Results: ALLPS induced more extensive liver regeneration (p < 0.001) and elevation of systemic and portal BA levels (p < 0.05) than PVL. The mRNA levels of proteins participating in hepatic Fxr signaling were comparable between the intervention groups. More profound activation of the intestinal Fxr pathway was observed 24 h after ALPPS compared to PVL. Conclusion: Our study elaborates on a possible linkage between BA-induced Fxr signaling and accelerated liver regeneration induced by ALPPS in rats. ALPPS could trigger liver regeneration via intestinal Fxr signaling cascades instead of hepatic Fxr signaling, thereby deviating from the mechanism of BA-mediated regeneration following one-stage hepatectomy.


Author(s):  
T. Fante ◽  
L. A. P. Simino ◽  
Marina Figueiredo Fontana ◽  
Andressa Reginato ◽  
Thomaz Guadagnini Ramalheira ◽  
...  

Abstract In the last decades, obesity and nonalcoholic fatty liver disease (NAFLD) have become increasingly prevalent in wide world. Fatty liver can be detrimental to liver regeneration (LR) and offspring of obese dams (HFD-O) are susceptible to NAFLD development. Here we evaluated LR capacity in HFD-O after partial hepatectomy (PHx). HFD-O re-exposed or not to HFD in later life were evaluated for metabolic parameters, inflammation, proliferation, tissue repair markers and survival rate after PHx. Increasing adiposity and fatty liver were observed in HFD-O. Despite lower IL-6 levels, Ki67 labeling, cells in S phase and Ciclin D1/PCNA protein content, a lower impact on survival rate was found after PHx, even when re-exposed to HFD. However, no difference was observed between offspring of control dams (SC-O) and HFD-O after surgery. Although LR impairment is dependent of steatosis development, offspring of obese dams are programmed to be protected from the damage promoted by HFD.


2021 ◽  
Vol 18 ◽  
pp. 7-11
Author(s):  
Daisuke Miyamoto ◽  
Yusuke Sakai ◽  
Yu Huang ◽  
Chihiro Yamasaki ◽  
Chise Tateno ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document