arbuscular mycorrhiza
Recently Published Documents


TOTAL DOCUMENTS

983
(FIVE YEARS 190)

H-INDEX

82
(FIVE YEARS 9)

2022 ◽  
Vol 171 ◽  
pp. 104325
Author(s):  
Jichen Wang ◽  
Jiang Wang ◽  
Ji-Zheng He ◽  
Zhongwang Jing ◽  
Yongli Xu ◽  
...  

2022 ◽  
Vol 32 (1) ◽  
Author(s):  
Nongthombam Olivia Devi ◽  
R. K. Tombisana Devi ◽  
Manashi Debbarma ◽  
Monika Hajong ◽  
Sushanti Thokchom

Abstract Background Fusarium wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici (FOL) is a serious disease that causes significant economic losses in tomato production. Seventeen endophytic Bacillus isolates from tomato roots of Meghalaya were tested for antagonistic and plant growth promotion activities. Dominating arbuscular mycorrhiza fungi (AMF) spores were isolated from the rhizosphere soils of tomato grown in Meghalaya. The effect of different combinations of AMF and endophytic Bacillus on Fusarium wilt severity and growth of tomato plant under pot and field conditions was studied. Results The endophytic Bacillus isolates ERBS51 and ERBS10 showed a maximum inhibition against FOL, with 58.43 and 55.68%, respectively, in a dual culture experiment. ERBS51 and ERBS10 were identified as Bacillus velezensis and Bacillus sp., respectively, based on 16s rRNA sequencing. Both isolates were found positive for iturin A, surfactin, bacillomycin D, protease, cellulase, pectinase, alpha-amylase, siderophore, ammonia production and ZnCO3 solubilization. Funneliformis mosseae and Glomus fasciculatum were the dominating AMF species in tomato rhizosphere of Meghalaya. The result of pot and field experiments revealed that out of all the treatments, combination of Funneliformis mosseae + Glomus fasciculatum + Bacillus velezensis + Bacillus sp. was shown to be the best in reducing the severity of Fusarium wilt to 77.44 and 66.74%, respectively. F. mosseae + G. fasciculatum + B. velezensis + Bacillus sp. also recorded the highest in most growth attributes and yield. Conclusions Endophytic Bacillus (B. velezensis and Bacillus sp.) and AMF (F. mosseae and G. fasciculatum) were safe and effective biocontrol agents against Fusarium wilt of tomato.


Mycorrhiza ◽  
2022 ◽  
Author(s):  
Bolaji Thanni ◽  
Roel Merckx ◽  
Pieterjan De Bauw ◽  
Margaux Boeraeve ◽  
Gerrit Peeters ◽  
...  

AbstractCassava, forming starch-rich, tuberous roots, is an important staple crop in smallholder farming systems in sub-Saharan Africa. Its relatively good tolerance to drought and nutrient-poor soils may be partly attributed to the crop’s association with arbuscular mycorrhiza fungi (AMF). Yet insights into AMF-community composition and richness of cassava, and knowledge of its environmental drivers are still limited. Here, we sampled 60 cassava fields across three major cassava-growing agro-ecological zones in Nigeria and used a DNA meta-barcoding approach to quantify large-scale spatial variation and evaluate the effects of soil characteristics and common agricultural practices on AMF community composition, richness and Shannon diversity. We identified 515 AMF operational taxonomic units (OTUs), dominated by Glomus, with large variation across agro-ecological zones, and with soil pH explaining most of the variation in AMF community composition. High levels of soil available phosphorus reduced OTU richness without affecting Shannon diversity. Long fallow periods (> 5 years) reduced AMF richness compared with short fallows, whereas both zero tillage and tractor tillage reduced AMF diversity compared with hoe tillage. This study reveals that the symbiotic relationship between cassava and AMF is strongly influenced by soil characteristics and agricultural management and that it is possible to adjust cassava cultivation practices to modify AMF diversity and community structure. Graphical abstract


2021 ◽  
Vol 233 (1) ◽  
Author(s):  
Shujuan Zhang ◽  
Wenfei Yun ◽  
Yu Xia ◽  
Sikai Wu ◽  
Zhaoyang You ◽  
...  

2021 ◽  
Vol 25 (7) ◽  
pp. 754-760
Author(s):  
A. A. Kryukov ◽  
A. O. Gorbunova ◽  
T. R. Kudriashova ◽  
O. I. Yakhin ◽  
A. A. Lubyanov ◽  
...  

Plant sugar transporters play an essential role in the organism’s productivity by carrying out carbohydrate transportation from source cells in the leaves to sink cells in the cortex. In addition, they aid in the regulation of a substantial part of the exchange of nutrients with microorganisms in the rhizosphere (bacteria and fungi), an activity essential to the formation of symbiotic relationships. This review pays special attention to carbohydrate nutrition during the development of arbuscular mycorrhiza (AM), a symbiosis of plants with fungi from the Glomeromycotina subdivision. This relationship results in the host plant receiving micronutrients from the mycosymbiont, mainly phosphorus, and the fungus receiving carbon assimilation products in return. While the efficient nutrient transport pathways in AM symbiosis are yet to be discovered, SWEET sugar transporters are one of the three key families of plant carbohydrate transporters. Specific AM symbiosis transporters can be identified among the SWEET proteins. The survey provides data on the study history, structure and localization, phylogeny and functions of the SWEET proteins. A high variability of both the SWEET proteins themselves and their functions is noted along with the fact that the same proteins may perform different functions in different plants. A special role is given to the SWEET transporters in AM development. SWEET transporters can also play a key role in abiotic stress tolerance, thus allowing plants to adapt to adverse environmental conditions. The development of knowledge about symbiotic systems will contribute to the creation of microbial preparations for use in agriculture in the Russian Federation. 


2021 ◽  
Vol 22 (23) ◽  
pp. 13086
Author(s):  
Jana Stallmann ◽  
Rabea Schweiger

Arbuscular mycorrhiza (AM), i.e., the interaction of plants with arbuscular mycorrhizal fungi (AMF), often influences plant growth, physiology, and metabolism. Effects of AM on the metabolic composition of plant phloem sap may affect aphids. We investigated the impacts of AM on primary metabolites in phloem exudates of the plant species Plantago major and Poa annua and on the aphid Myzus persicae. Plants were grown without or with a generalist AMF species, leaf phloem exudates were collected, and primary metabolites were measured. Additionally, the performance of M. persicae on control and mycorrhizal plants of both species was assessed. While the plant species differed largely in the relative proportions of primary metabolites in their phloem exudates, metabolic effects of AM were less pronounced. Slightly higher proportions of sucrose and shifts in proportions of some amino acids in mycorrhizal plants indicated changes in phloem upload and resource allocation patterns within the plants. Aphids showed a higher performance on P. annua than on P. major. AM negatively affected the survival of aphids on P. major, whereas positive effects of AM were found on P. annua in a subsequent generation. Next to other factors, the metabolic composition of the phloem exudates may partly explain these findings.


2021 ◽  
Vol 62 (1) ◽  
Author(s):  
Fatemeh Ebrahimi ◽  
Amin Salehi ◽  
Mohsen Movahedi Dehnavi ◽  
Amin Mirshekari ◽  
Mohammad Hamidian ◽  
...  

Abstract Background Water-deficit stress is known as one of the most severe environmental stresses affecting the growth of plants through marked reduction of water uptake, which leads to osmotic stress by lowering water potential. Adopting appropriate varieties using soil microorganisms, such as arbuscular mycorrhiza (AM) fungi, can significantly reduce the adverse effects of water deficiency. This study aimed to evaluate the role of Funneliformis mosseae on nutrient uptake and certain physiological traits of two chamomile varieties, namely Bodgold (Bod) and Soroksári (Sor) under osmotic stress. For pot culture, a factorial experiment was performed in a completely randomized design with three factors: osmotic stress (PEG 6000) was applied along with Hoagland solution at three levels (0, -0.4 and -0.8 MPa), two German chamomile varieties (Bodgold (Bod) and Soroksari (Sor)), and AM inoculation (Funneliformis mosseae species (fungal and non-fungal)) at four replications in perlite substrate. Results Osmotic stress significantly reduced the uptake of macro-nutrients (N and P) and micro-nutrients (Fe, Cu, Mn, and Zn) in the shoots and roots. Moreover, the level of osmolytes (total soluble sugars and proline) and the activity of antioxidant enzymes in the shoots of both varieties increased under osmotic stress. Regarding the Sor variety, the level of these compounds was more satisfactory. AM improved plant nutrition uptake and osmolyte contents while enhancing antioxidant enzymes and reducing the adverse effects of osmotic stress. Under osmotic stress, the growth and total dry weight were improved upon AM inoculation. Conclusions In general, inoculation of chamomile with AM balanced the uptake of nutrients and increased the level of osmolytes and antioxidant enzymes; hence, it improved plant characteristics under osmotic stress in both varieties. However, it was found to be more effective in reducing stress damages in the Sor variety.


2021 ◽  
Author(s):  
Stavros D Veresoglou ◽  
David Johnson ◽  
Magkdi Mola ◽  
Gaowen Yang ◽  
Matthias C Rillig

2021 ◽  
Author(s):  
Debatosh Das ◽  
Michael Paries ◽  
Karen Hobecker ◽  
Michael Gigl ◽  
Corinna Dawid ◽  
...  

Arbuscular mycorrhiza (AM) is a widespread symbiosis between roots of the majority of land plants and Glomeromycotina fungi. AM is important for ecosystem health and functioning as the fungi critically support plant performance by providing essential mineral nutrients, particularly the poorly accessible phosphate, in exchange for organic carbon. AM fungi colonize the inside of roots and this is promoted at low but inhibited at high plant phosphate status, while the mechanistic basis for this phosphate-dependence remained obscure. Here we demonstrate that a major transcriptional regulator of phosphate starvation responses in rice PHOSPHATE STARVATION RESPONSE 2 (PHR2) regulates AM. Root colonization of phr2 mutants is drastically reduced, and PHR2 is required for root colonization, mycorrhizal phosphate uptake, and yield increase in field soil. PHR2 promotes AM by targeting genes required for pre-contact signaling, root colonization, and AM function. Thus, this important symbiosis is directly wired to the PHR2-controlled plant phosphate starvation response.


Sign in / Sign up

Export Citation Format

Share Document