infection process
Recently Published Documents


TOTAL DOCUMENTS

1176
(FIVE YEARS 414)

H-INDEX

67
(FIVE YEARS 6)

2022 ◽  
Vol 23 (2) ◽  
pp. 875
Author(s):  
Pontus Öhlund ◽  
Nicolas Delhomme ◽  
Juliette Hayer ◽  
Jenny C. Hesson ◽  
Anne-Lie Blomström

Understanding the flavivirus infection process in mosquito hosts is important and fundamental in the search for novel control strategies that target the mosquitoes’ ability to carry and transmit pathogenic arboviruses. A group of viruses known as insect-specific viruses (ISVs) has been shown to interfere with the infection and replication of a secondary arbovirus infection in mosquitoes and mosquito-derived cell lines. However, the molecular mechanisms behind this interference are unknown. Therefore, in the present study, we infected the Aedes albopictus cell line U4.4 with either the West Nile virus (WNV), the insect-specific Lammi virus (LamV) or an infection scheme whereby cells were pre-infected with LamV 24 h prior to WNV challenge. The qPCR analysis showed that the dual-infected U4.4 cells had a reduced number of WNV RNA copies compared to WNV-only infected cells. The transcriptome profiles of the different infection groups showed a variety of genes with altered expression. WNV-infected cells had an up-regulation of a broad range of immune-related genes, while in LamV-infected cells, many genes related to stress, such as different heat-shock proteins, were up-regulated. The transcriptome profile of the dual-infected cells was a mix of up- and down-regulated genes triggered by both viruses. Furthermore, we observed an up-regulation of signal peptidase complex (SPC) proteins in all infection groups. These SPC proteins have shown importance for flavivirus assembly and secretion and could be potential targets for gene modification in strategies for the interruption of flavivirus transmission by mosquitoes.


2022 ◽  
Author(s):  
Cristiane A. Milagres ◽  
Renata Belisário ◽  
Daiana M. Q. Azevedo ◽  
Leandro L. Oliveira ◽  
Fabrício A. Rodrigues ◽  
...  
Keyword(s):  

2022 ◽  
Vol 12 ◽  
Author(s):  
Dylan R. Zeiss ◽  
Paul A. Steenkamp ◽  
Lizelle A. Piater ◽  
Ian A. Dubery

Ralstonia solanacearum, the causal agent of bacterial wilt, is one of the most destructive bacterial plant pathogens. This is linked to its evolutionary adaptation to evade host surveillance during the infection process since many of the pathogen’s associated molecular patterns escape recognition. However, a 22-amino acid sequence of R. solanacearum-derived cold shock protein (csp22) was discovered to elicit an immune response in the Solanaceae. Using untargeted metabolomics, the effects of csp22-elicitation on the metabolome of Solanum lycopersicum leaves were investigated. Additionally, the study set out to discover trends that may suggest that csp22 inoculation bestows enhanced resistance on tomato against bacterial wilt. Results revealed the redirection of metabolism toward the phenylpropanoid pathway and sub-branches thereof. Compared to the host response with live bacteria, csp22 induced a subset of the discriminant metabolites, but also metabolites not induced in response to R. solanacearum. Here, a spectrum of hydroxycinnamic acids (especially ferulic acid), their conjugates and derivatives predominated as signatory biomarkers. From a metabolomics perspective, the results support claims that csp22 pre-treatment of tomato plants elicits increased resistance to R. solanacearum infection and contribute to knowledge on plant immune systems operation at an integrative level. The functional significance of these specialized compounds may thus support a heightened state of defense that can be applied to ward off attacking pathogens or toward priming of defense against future infections.


2022 ◽  
pp. 088532822110632
Author(s):  
Junfang Liu ◽  
Minhong Su ◽  
Xin Chen ◽  
Zhongli Li ◽  
Zekui Fang ◽  
...  

Monitoring the infection behavior of avian influenza viruses is crucial for understanding viral pathogenesis and preventing its epidemics among people. A number of viral labeling methods have been utilized for tracking viral infection process, but most of them are laborious or decreasing viral activity. Herein we explored a lipid biosynthetic labeling strategy for dynamical tracking the infection of H5N1 pseudotype virus (H5N1p) in host. Biotinylated lipids (biotinyl Cap-PE) were successfully incorporated into viral envelope when it underwent budding process by taking advantage of host cell-derived lipid metabolism. Biotin-H5N1p virus was effectively in situ–labeled with streptavidin-modified near-infrared quantum dots (NIR SA-QDs) using streptavidin-biotin conjugation with well-preserved virus activities. Dual-labeled imaging obviously shows that H5N1p viruses are primarily taken up in host cells via clathrin-mediated endocytosis. In animal models, Virus-conjugated NIR QDs displayed extraordinary photoluminescence, superior stability, and tissue penetration in lung, allowing us to long-term monitor respiratory viral infection in a noninvasive manner. Importantly, the co-localization of viral hemagglutinin protein and QDs in infected lung further conformed the dynamic infection process of virus in vivo. Hence, this in situ QD-labeling strategy based on cell natural biosynthesis provides a brand-new and reliable tool for noninvasion visualizing viral infection in body in a real-time manner.


Foods ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 108
Author(s):  
Mayra Aguirre Garcia ◽  
Killian Hillion ◽  
Jean-Michel Cappelier ◽  
Michel Neunlist ◽  
Maxime M. Mahe ◽  
...  

Foodborne diseases cause high morbidity and mortality worldwide. Understanding the relationships between bacteria and epithelial cells throughout the infection process is essential to setting up preventive and therapeutic solutions. The extensive study of their pathophysiology has mostly been performed on transformed cell cultures that do not fully mirror the complex cell populations, the in vivo architectures, and the genetic profiles of native tissues. Following advances in primary cell culture techniques, organoids have been developed. Such technological breakthroughs have opened a new path in the study of microbial infectious diseases, and thus opened onto new strategies to control foodborne hazards. This review sheds new light on cellular messages from the host–foodborne pathogen crosstalk during in vitro organoid infection by the foodborne pathogenic bacteria with the highest health burden. Finally, future perspectives and current challenges are discussed to provide a better understanding of the potential applications of organoids in the investigation of foodborne infectious diseases.


2021 ◽  
Vol 12 ◽  
Author(s):  
Dandan Xiao ◽  
Ke Zhou ◽  
Xiaoqian Yang ◽  
Yuzhang Yang ◽  
Yudie Ma ◽  
...  

DNA methylation plays crucial roles in responses to environmental stimuli. Modification of DNA methylation during development and abiotic stress responses has been confirmed in increasing numbers of plants, mainly annual plants. However, the epigenetic regulation mechanism underlying the immune response to pathogens remains largely unknown in plants, especially trees. To investigate whether DNA methylation is involved in the response to infection process or is related to the resistance differences among poplars, we performed comprehensive whole-genome bisulfite sequencing of the infected stem of the susceptible type Populus × euramerican ‘74/76’ and resistant type Populus tomentosa ‘henan’ upon Lonsdalea populi infection. The results revealed that DNA methylation changed dynamically in poplars during the infection process with a remarkable decrease seen in the DNA methylation ratio. Intriguingly, the resistant P. tomentosa ‘henan’ had a much lower basal DNA methylation ratio than the susceptible P. × euramerican ‘74/76’. Compared to mock-inoculation, both poplar types underwent post-inoculation CHH hypomethylation; however, significant decreases in mC and mCHH proportions were found in resistant poplar. In addition, most differentially CHH-hypomethylated regions were distributed in repeat and promoter regions. Based on comparison of DNA methylation modification with the expression profiles of genes, DNA methylation occurred in resistance genes, pathogenesis-related genes, and phytohormone genes in poplars during pathogen infection. Additionally, transcript levels of genes encoding methylation-related enzymes changed during pathogen infection. Interestingly, small-regulator miRNAs were subject to DNA methylation in poplars experiencing pathogen infection. This investigation highlights the critical role of DNA methylation in the poplar immune response to pathogen infection and provides new insights into epigenetic regulation in perennial plants in response to biotic stress.


Pathogens ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 10
Author(s):  
Zhengke Shen ◽  
Yue Liu ◽  
Lanming Chen

Vibrio parahaemolyticus can cause acute gastroenteritis, wound infection, and septicemia in humans. In this study, a simple, specific, and user-friendly diagnostic tool was developed for the first time for the qualitative and quantitative detection of toxins and infection process-associated genes opaR, vpadF, tlh, and ureC in V. parahaemolyticus using the loop-mediated isothermal amplification (LAMP) technique. Three pairs of specific inner, outer, and loop primers were designed for targeting each of these genes, and the results showed no cross-reaction with the other common Vibrios and non-Vibrios pathogenic bacteria. Positive results in the one-step LAMP reaction (at 65 °C for 45 min) were identified by a change to light green and the emission of bright green fluorescence under visible light and UV light (302 nm), respectively. The lowest limit of detection (LOD) for the target genes ranged from 1.46 × 10−5 to 1.85 × 10−3 ng/reaction (25 µL) for the genomic DNA, and from 1.03 × 10−2 to 1.73 × 100 CFU/reaction (25 µL) for the cell culture of V. parahaemolyticus. The usefulness of the developed method was demonstrated by the fact that the bacterium could be detected in water from various sources and commonly consumed aquatic product samples. The presence of opaR and tlh genes in the Parabramis pekinensis intestine indicated a risk of potentially virulent V. parahaemolyticus in the fish.


2021 ◽  
Author(s):  
Warren W. Wakarchuk ◽  
N. Martin Young ◽  
Simon J. Foote

Among the non-carbohydrate components of glycans, the addition of phosphocholine (ChoP) to the glycans of pathogens occurs more rarely than acetylation or methylation, but it has far more potent biological consequences. These arise from ChoP's multiple interactions with host proteins, which are important at all stages of the infection process. These stages include initial adherence to cells, encountering the host's innate immune system and then the adaptive immune system. Thus, in the initial stages of an infection, ChoP groups are an asset to the pathogen, but they can turn into a disadvantage subsequently. In this review, we have focussed on structural aspects of these phenomena. We describe the biosynthesis of the ChoP modification, the structures of the pathogen glycans known to carry ChoP groups and the host proteins that recognize ChoP.


2021 ◽  
Vol 12 ◽  
Author(s):  
Junli Jia ◽  
Jiangan Fu ◽  
Huamin Tang

Antiviral innate immune response triggered by nucleic acid recognition plays an extremely important role in controlling viral infections. The initiation of antiviral immune response against RNA viruses through ligand recognition of retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) was extensively studied. RLR’s role in DNA virus infection, which is less known, is increasing attention. Here, we review the research progress of the ligand recognition of RLRs during the DNA virus infection process and the viral evasion mechanism from host immune responses.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12631
Author(s):  
Aline L. de Oliveira ◽  
Nicolle L. Barbieri ◽  
Darby M. Newman ◽  
Meaghan M. Young ◽  
Lisa K. Nolan ◽  
...  

Avian pathogenic E. coli is the causative agent of extra-intestinal infections in birds known as colibacillosis, which can manifest as localized or systemic infections. The disease affects all stages of poultry production, resulting in economic losses that occur due to morbidity, carcass condemnation and increased mortality of the birds. APEC strains have a diverse virulence trait repertoire, which includes virulence factors involved in adherence to and invasion of the host cells, serum resistance factors, and toxins. However, the pathogenesis of APEC infections remains to be fully elucidated. The Type 6 secretion (T6SS) system has recently gained attention due to its role in the infection process and protection of bacteria from host defenses in human and animal pathogens. Previous work has shown that T6SS components are involved in the adherence to and invasion of host cells, as well as in the formation of biofilm, and intramacrophage bacterial replication. Here, we analyzed the frequency of T6SS genes hcp, impK, evpB, vasK and icmF in a collection of APEC strains and their potential role in virulence-associated phenotypes of APECO18. The T6SS genes were found to be significantly more prevalent in APEC than in fecal E. coli isolates from healthy birds. Expression of T6SS genes was analyzed in culture media and upon contact with host cells. Mutants were generated for hcp, impK, evpB, and icmF and characterized for their impact on virulence-associated phenotypes, including adherence to and invasion of host model cells, and resistance to predation by Dictyostelium discoideum. Deletion of the aforementioned genes did not significantly affect adherence and invasion capabilities of APECO18. Deletion of hcp reduced resistance of APECO18 to predation by D. discoideum, suggesting that T6SS is involved in the virulence of APECO18.


Sign in / Sign up

Export Citation Format

Share Document