large earthquakes
Recently Published Documents


TOTAL DOCUMENTS

1242
(FIVE YEARS 318)

H-INDEX

66
(FIVE YEARS 7)

2022 ◽  
Vol 2022 ◽  
pp. 1-23
Author(s):  
Subrata Kundu ◽  
Swati Chowdhury ◽  
Soujan Ghosh ◽  
Sudipta Sasmal ◽  
Dimitrios Z. Politis ◽  
...  

Atmospheric disturbances caused by seismic activity are a complex phenomenon. The Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) (LAIC) mechanism gives a detailed idea to understand these processes to study the possible impacts of a forthcoming earthquake. The atmospheric gravity wave (AGW) is one of the most accurate parameters for explaining such LAIC process, where seismogenic disturbances can be explained in terms of atmospheric waves caused by temperature changes. The key goal of this work is to study the perturbation in the potential energy associated with stratospheric AGW prior to many large earthquakes. We select seven large earthquakes having Richter scale magnitudes greater than seven ( M > 7.0 ) in Japan (Tohoku and Kumamoto), Mexico (Chiapas), Nepal, and the Indian Ocean region, to study the intensification of AGW using the atmospheric temperature profile as recorded from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) satellite. We observe a significant enhancement in the potential energy of the AGW ranging from 2 to 22 days prior to different earthquakes. We examine the conditions of geomagnetic disturbances, typhoons, and thunderstorms during our study and eliminate the possible contamination due to these events.


2022 ◽  
Author(s):  
Marcus Herrmann ◽  
Ester Piegari ◽  
Warner Marzocchi

Abstract The Magnitude–Frequency-Distribution (MFD) of earthquakes is typically modeled with the (tapered) Gutenberg–Richter relation. The main parameter of this relation, the b-value, controls the relative rate of small and large earthquakes. Resolving spatiotemporal variations of the b-value is critical to understanding the earthquake occurrence process and improving earthquake forecasting. However, this variation is not well understood. Here we present unexpected MFD variability using a high-resolution earthquake catalog of the 2016–2017 central Italy sequence. Isolation of seismicity clusters reveals that the MFD differs in nearby clusters, varies or remains constant in time depending on the cluster, and features an unexpected b-value increase in the cluster where the largest event will occur. These findings suggest a strong influence of the heterogeneity and complexity of tectonic structures on the MFD. Our findings raise the question of the appropriate spatiotemporal scale for resolving the b-value, which poses a serious obstacle to interpreting and using the MFD in earthquake forecasting.


Author(s):  
Alik Ismail-Zadeh ◽  
Alexander Soloviev

AbstractDynamics of lithospheric plates resulting in localisation of tectonic stresses and their release in large earthquakes provides important information for seismic hazard assessments. Numerical modelling of the dynamics and earthquake simulations have been changing our view about occurrences of large earthquakes in a system of major regional faults and about the recurrence time of the earthquakes. Here, we overview quantitative models of tectonic stress generation and stress transfer, models of dynamic systems reproducing basic features of seismicity, and fault dynamics models. Then, we review the thirty-year efforts in the modelling of lithospheric block-and-fault dynamics, which allowed us to better understand how the blocks react to the plate motion, how stresses are localised and released in earthquakes, how rheological properties of fault zones exert influence on the earthquake dynamics, where large seismic events occur, and what is the recurrence time of these events. A few key factors influencing the earthquake sequences, clustering, and magnitude are identified including lithospheric plate driving forces, the geometry of fault zones, and their physical properties. We illustrate the effects of the key factors by analysing the block-and-fault dynamics models applied to several earthquake-prone regions, such as Carpathians, Caucasus, Tibet-Himalaya, and the Sunda arc, as well as to the global tectonic plate dynamics.


2022 ◽  
Vol 74 (1) ◽  
Author(s):  
Fuyuki Hirose ◽  
Kenji Maeda ◽  
Osamu Kamigaichi

AbstractThe correlation between Earth’s tides and background seismicity has been suggested to become stronger before great earthquakes and weaker after. However, previous studies have only retrospectively analyzed this correlation after individual large earthquakes; it thus remains vague (i) whether such variations might be expected preceding future large earthquakes, and (ii) the strength of the tidal correlation during interseismic periods. Therefore, we retrospectively investigated whether significant temporal variations of the tidal correlation precede large interplate earthquakes along the Tonga–Kermadec trench, where Mw 7-class earthquakes frequently occurred from 1977 to 31 December 2020. We evaluated a forecast model based on the temporal variations of the tidal correlation via Molchan’s error diagram, using the tidal correlation value itself as well as its rate of change as threshold values. For Mw ≥ 7.0 earthquakes, this model was as ineffective as random guessing. For Mw ≥ 6.5, 6.0, or 5.5 earthquakes, the forecast model performed better than random guessing in some cases, but even the best forecast only had a probability gain of about 1.7. Therefore, the practicality of this model alone is poor, at least in this region. These results suggest that changes of the tidal correlation are not reliable indicators of large earthquakes along the Tonga–Kermadec trench. Graphical Abstract


2022 ◽  
Vol 14 (1) ◽  
pp. 188
Author(s):  
Saul A. Sanchez ◽  
Esfhan A. Kherani ◽  
Elvira Astafyeva ◽  
Eurico R. de Paula

Earthquakes are known to generate disturbances in the ionosphere. Such disturbances, referred to as co-seismic ionospheric disturbances, or ionoquakes, were previously reported for large earthquakes with magnitudes Mw≥ 6.6. This paper reports ionoquakes associated with the Ridgecrest earthquakes of magnitude (Mw=6.4), that occurred on 4 July 2019 in California, USA. The ionoquakes manifested in total electron content (TEC) in the form of traveling ionospheric disturbances (TIDs) within 1 h from the mainshock onset. These seismic-origin TIDs have unique wave characteristics that distinguish them from TIDs of non-seismic origin arising from a moderate geomagnetic activity on the same day. Moreover, in the space-time domain of the detection of seismic-origin TIDs, TIDs are absent on the day before and day after the earthquake day. Their spectral characteristics relate them to the Earth’s normal modes and atmospheric resonance modes. We found the ground velocity associated with the mainshock, rather than the ground displacement, satisfies the threshold criteria for detectable ionoquakes in TEC measurements. Numerical simulation suggested that the coupled seismo–atmosphere–ionosphere (SAI) dynamics energized by the atmospheric waves are responsible for the generation of ionoquakes. This study’s findings demonstrate the potential of using TEC measurement to detect the ionospheric counterparts of moderate earthquakes.


2022 ◽  
pp. 104542
Author(s):  
Daniel Boddice ◽  
Nicole Metje ◽  
George Tuckwell
Keyword(s):  

Author(s):  
Anna Mikheeva ◽  
Igor Kalinnikov

The creepex (creep & explosion) parameter provides information on the relation between low- and high-frequency radiation components in the earthquake source and has become a physically meaningful tool for analyzing various aspects of seismogenesis, in particular, the diagnostics of the preparation processes and the its aftershocks activity of a strong event. This paper investigates the spatial-temporal dynamics of creepex in the focal zones of a number of the major earthquakes from the plate convergence regions, including continental Kashmir earthquake (08.10.2005, MS=7.6) and continental-oceanic Tohoku (11.03.2011, Mw=8.7). One of the goals of this work is to demonstrate the capabilities of the method in studying physically grounded patterns of focal zones development at the first hours after the main shock. Because of this study, the following regularities of the source relaxation process were revealed: the partiality of the aftershock process, positive values of the creepex at its first hours (explained by the influence of the dilatancy process), and abrupt changes in the creepex during deep transitions (explained by the thermodynamic effect and by the increase in pressure with depth).


MAUSAM ◽  
2021 ◽  
Vol 63 (2) ◽  
pp. 261-274
Author(s):  
H.P. SHUKLA ◽  
R.S. DATTATRAYAM ◽  
A.K. BHATNAGAR

The collision of Indian and Eurasian continents caused large scale deformation and high seismicityof vast areas of both continents in the geological history. The North-West portion of the Himalayan arc which is lyingunder the rupture zones of Kangra earthquake of 1905, Uttarkashi earthquake of 1991 and Chamoli earthquake in 1999,has experienced many earthquakes of magnitude 6 and above. The region of North-West India between 30.0º - 35.0ºNorth and 73.0º - 79.0º East is, therefore, under intense investigations by various scientists since the origin of theHimalayas. India Meteorological Department had opened thirteen seismic observatories in early sixties for monitoringof earthquake activities in and around Bhakra, Pong, Pandoh dams in Punjab / Himachal Pradesh and Salal dam inJ&K on specific demand of the dam authorities. These observatories have recorded the earthquakes occurred in thisregion having magnitude even less than 2. The data collected for the last two decades is very useful for the scientiststo investigate seismicity and tectonics of the Himalayas. The present study could locate the regions which areseismically most active and also the region of seismic gap. Thus present study confirms association of seismic activityin the region with two major fault systems called Main Boundary Thrust (MBT) and Main Central Thrust (MCT).Comparative seismic activity within 100 km from each dam, reveal that most active region was around Pong followed byPandoh, Bhakra and Salal dams. The temporal variation of b-values for the whole period also shows that low b-valueanomalies are usually followed by large earthquakes of M > 5.5. No definite conclusions could be drawn with regard tothe relationship between the observed seismic activity around the dam sites with the corresponding water levelfluctuations in the reservoirs.


Geology ◽  
2021 ◽  
Author(s):  
Marco Bonini

Earthquakes can trigger increased degassing in hydrogeological systems. Many of these systems return to preseismic conditions after months, but sometimes postseismic degassing lasts for years. The factors controlling such long-lasting degassing are poorly known. I explored the potential role of diverse triggering mechanisms (i.e., dynamic and static stress changes, volumetric strain) for three large earthquakes that induced postseismic degassing (the Wenchuan [China], Maule [Chile], and Gorkha [Nepal] earthquakes). The lessons from this study suggest that hydrogeological systems can respond to earthquakes in various ways, and different causal mechanisms can play a role. Persistent increased CO2 flux from hot springs has been documented after the Gorkha earthquake. These hot springs had their feeder systems dominantly unclamped, suggesting that sufficiently large normal stress changes may sustain late postseismic degassing. The results of this study are twofold: (1) they show a spatial correlation between unclamping stress and increased gas flow, and (2) they provide an explanation for protracted increased degassing.


Author(s):  
Jaeseok Lee ◽  
Jung-Hun Song ◽  
Seongryong Kim ◽  
Junkee Rhie ◽  
Seok Goo Song

ABSTRACT Accurate and practical ground-motion predictions for potential large earthquakes are crucial for seismic hazard analysis of areas with insufficient instrumental data. Studies on historical earthquake records of the Korean Peninsula suggest that damaging earthquakes are possible in the southeastern region. Yet classical ground-motion prediction methods are limited in considering the physical rupture process and its effects on ground motion in complex velocity structures. In this study, we performed ground-motion simulations based on rigorous physics through pseudodynamic source modeling and wave propagation simulations in a 3D seismic velocity model. Ensembles of earthquake scenarios were generated by emulating the one- and two-point statistics of earthquake source parameters derived from a series of dynamic rupture models. The synthetic seismograms and the distributions of simulated peak ground velocities (PGVs) were compared with the observations of the 2016 Mw 5.4 Gyeongju earthquake in the Korean Peninsula. The effects of surface-wave radiation, rupture directivity, and both local and regional amplifications from the 3D wave propagation were reproduced accurately in the spatial distribution of simulated PGVs, in agreement with the observations from dense seismic networks by mean log residuals of −0.28 and standard deviations of 0.78. Amplifications in ground motions were found in regions having low crustal velocities and in regions of constructive interference from the crustal shear-wave phases associated with postcritical reflections from the Moho discontinuity. We extended the established approach to earthquake scenarios of Mw 6.0, 6.5, and 7.0, at the same location, to provide the distribution of ground motions from potential large earthquakes in the area. Although we demonstrate the value of these simulations, improvements in the accuracy of the 3D seismic velocity model and the scaling relationship of the source models would be necessary for a more accurate estimation of near-source ground motions.


Sign in / Sign up

Export Citation Format

Share Document