red coloration
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 28)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
Vol 109 (1) ◽  
Author(s):  
Mateusz Glenszczyk ◽  
David Outomuro ◽  
Matjaž Gregorič ◽  
Simona Kralj-Fišer ◽  
Jutta M. Schneider ◽  
...  

AbstractExamining the role of color in mate choice without testing what colors the study animal is capable of seeing can lead to ill-posed hypotheses and erroneous conclusions. Here, we test the seemingly reasonable assumption that the sexually dimorphic red coloration of the male jumping spider Saitis barbipes is distinguishable, by females, from adjacent black color patches. Using microspectrophotometry, we find clear evidence for photoreceptor classes with maximal sensitivity in the UV (359 nm) and green (526 nm), inconclusive evidence for a photoreceptor maximally sensitive in the blue (451 nm), and no evidence for a red photoreceptor. No colored filters within the lens or retina could be found to shift green sensitivity to red. To quantify and visualize whether females may nevertheless be capable of discriminating red from black color patches, we take multispectral images of males and calculate photoreceptor excitations and color contrasts between color patches. Red patches would be, at best, barely discriminable from black, and not discriminable from a low-luminance green. Some color patches that appear achromatic to human eyes, such as beige and white, strongly absorb UV wavelengths and would appear as brighter “spider-greens” to S. barbipes than the red color patches. Unexpectedly, we discover an iridescent UV patch that contrasts strongly with the UV-absorbing surfaces dominating the rest of the spider. We propose that red and black coloration may serve identical purposes in sexual signaling, functioning to generate strong achromatic contrast with the visual background. The potential functional significance of red coloration outside of sexual signaling is discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xujun Ye ◽  
Tamaki Doi ◽  
Osamu Arakawa ◽  
Shuhuai Zhang

AbstractReliable information about degree of red coloration in fruit flesh is essential for grading and sorting of red-fleshed apples. We propose a spatially resolved interactance spectroscopy approach as a new rapid and non-destructive technique to estimate degree of red coloration in the flesh of a red-fleshed apple cultivar ‘Kurenainoyume’. A novel measurement system was developed to obtain spatially resolved interactance spectra (190–1070 nm) for apple fruits at eight different light source-detector separation (SDS) distances on fruit surface. Anthocyanins in apple were extracted using a solvent extraction technique, and their contents were quantified with a spectrophotometer. Partial least squares (PLS) regression analyses were performed to develop estimation models for anthocyanin content from spatially resolved interactance spectra. Results showed that the PLS models based on interactance spectra obtained at different SDS distances achieved different predictive accuracy. Further, the system demonstrated the possibility to detect the degree of red coloration in the flesh at specific depths by identifying an optimal SDS distance. This might contribute to provide a detailed profile of the red coloration (anthocyanins) that is unevenly distributed among different depths of the flesh. This new approach may be potentially applied to grading and sorting systems for red-fleshed apples in fruit industry.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Delai Huang ◽  
Victor M Lewis ◽  
Tarah N Foster ◽  
Matthew B Toomey ◽  
Joseph C Corbo ◽  
...  

Animal pigment patterns play important roles in behavior and, in many species, red coloration serves as an honest signal of individual quality in mate choice. Among Danio fishes, some species develop erythrophores, pigment cells that contain red ketocarotenoids, whereas other species, like zebrafish (D. rerio) only have yellow xanthophores. Here, we use pearl danio (D. albolineatus) to assess the developmental origin of erythrophores and their mechanisms of differentiation. We show that erythrophores in the fin of D. albolineatus share a common progenitor with xanthophores and maintain plasticity in cell fate even after differentiation. We further identify the predominant ketocarotenoids that confer red coloration to erythrophores and use reverse genetics to pinpoint genes required for the differentiation and maintenance of these cells. Our analyses are a first step toward defining the mechanisms underlying the development of erythrophore-mediated red coloration in Danio and reveal striking parallels with the mechanism of red coloration in birds.


2021 ◽  
Author(s):  
Nobuhiro Sasaki ◽  
Keiichirou Nemoto ◽  
Yuzo Nishizaki ◽  
Naoki Sugimoto ◽  
Keisuke Tasaki ◽  
...  

Aquaculture ◽  
2021 ◽  
pp. 737208
Author(s):  
Jinxing Du ◽  
Honglin Chen ◽  
Biplab K. Mandal ◽  
Jun Wang ◽  
Zhiyi Shi ◽  
...  

2021 ◽  
Author(s):  
Delai Huang ◽  
Victor M Lewis ◽  
Matthew B Toomey ◽  
Joseph C Corbo ◽  
David M. Parichy

Animal pigment patterns play important roles in behavior and, in many species, red coloration serves as an honest signal of individual quality in mate choice. Among Danio fishes, some species develop erythrophores, pigment cells that contain red ketocarotenoids, whereas other species, like zebrafish (D. rerio) only have yellow xanthophores. Here, we use pearl danio (D. albolineatus) to assess the developmental origin of erythrophores and their mechanisms of differentiation. We show that erythrophores in the fin of D. albolineatus share a common progenitor with xanthophores and maintain plasticity in cell fate even after differentiation. We further identify the predominant ketocarotenoids that confer red coloration to erythrophores and use reverse genetics to pinpoint genes required for the differentiation and maintenance of these cells. Our analyses are a first step towards defining the mechanisms underlying the development of erythrophore-mediated red coloration in Danio and reveal striking parallels with the mechanism of red coloration in birds.


2021 ◽  
Author(s):  
Dustin R Rubenstein ◽  
André Corvelo ◽  
Matthew D MacManes ◽  
Rafael Maia ◽  
Giuseppe Narzisi ◽  
...  

Abstract Iridescence is widespread in the living world, occurring in organisms as diverse as bacteria, plants, and animals. Yet, compared to pigment-based forms of coloration, we know surprisingly little about the developmental and molecular bases of the structural colors that give rise to iridescence. Birds display a rich diversity of iridescent structural colors that are produced in feathers by the arrangement of melanin-containing organelles called melanosomes into nanoscale configurations, but how these often unusually shaped melanosomes form, or how they are arranged into highly organized nanostructures, remains largely unknown. Here, we use functional genomics to explore the developmental basis of iridescent plumage using superb starlings (Lamprotornis superbus), which produce both iridescent blue and non-iridescent red feathers. Through morphological and chemical analyses, we confirm that hollow, flattened melanosomes in iridescent feathers are eumelanin-based, whereas melanosomes in non-iridescent feathers are solid and amorphous, suggesting that high pheomelanin content underlies red coloration. Intriguingly, the nanoscale arrangement of melanosomes within the barbules was surprisingly similar between feather types. After creating a new genome assembly, we use transcriptomics to show that non-iridescent feather development is associated with genes related to pigmentation, metabolism, and mitochondrial function, suggesting non-iridescent feathers are more energetically expensive to produce than iridescent feathers. However, iridescent feather development is associated with genes related to structural and cellular organization, suggesting that, while nanostructures themselves may passively assemble, barbules and melanosomes may require active organization to give them their shape. Together, our analyses suggest that iridescent feathers form through a combination of passive self-assembly and active processes.


2021 ◽  
Author(s):  
Xinghao Chen ◽  
Hanqi Liu ◽  
Shijie Wang ◽  
Chao Zhang ◽  
Minsheng Yang ◽  
...  

Abstract The red-leaved poplar cultivars ‘Quanhong’ and ‘Xuanhong’ are bud mutations of Populus deltoides cv. ‘Zhonglin 2025’. These cultivars are valued for their beautiful shape, lack of flying catkins, and ornamental leaf colors. However, the understanding of the molecular mechanism of anthocyanin accumulation in the leaves of red-leaved poplars is still unclear. Here, we profiled the changes of pigment content, transcriptome and proteome expression in the leaves of three poplar cultivars and the results showed that the ratios of anthocyanin to total chlorophyll in both red-leaved poplars were higher than that in ‘Zhonglin 2025’, indicating that the anthocyanin was highly accumulated in the leaves of red-leaved poplars. Based on the results of integrated transcriptome and proteome analysis, 15 and 11 differentially expressed genes/proteins involved in anthocyanin synthesis were screened in ‘Quanhong’ and ‘Xuanhong’, respectively, including the CHS, F3H, and DFR genes. Among the 120 transcription factors, 3 (HY5, HYH, and TTG2), may be directly involved in the regulation of anthocyanin synthesis in both red-leaved poplars. This study screens the candidate genes involved in anthocyanin accumulation in the leaves of red-leaved poplars and lays a foundation for further exploring the molecular mechanism of leaf red coloration in red-leaved poplars.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5395
Author(s):  
Milan Skalicky ◽  
Jan Kubes ◽  
Hajihashemi Shokoofeh ◽  
Md. Tahjib-Ul-Arif ◽  
Pavla Vachova ◽  
...  

There are 11 different varieties of Beta vulgaris L. that are used in the food industry, including sugar beets, beetroots, Swiss chard, and fodder beets. The typical red coloration of their tissues is caused by the indole-derived glycosides known as betalains that were analyzed in hypocotyl extracts by UV/Vis spectrophotometry to determine the content of betacyanins (betanin) and of betaxanthins (vulgaxanthin I) as constituents of the total betalain content. Fields of beet crops use to be also infested by wild beets, hybrids related to B. vulgaris subsp. maritima or B. macrocarpa Guss., which significantly decrease the quality and quantity of sugar beet yield; additionally, these plants produce betalains at an early stage. All tested B. vulgaris varieties could be distinguished from weed beets according to betacyanins, betaxanthins or total betalain content. The highest values of betacyanins were found in beetroots ‘Monorubra’ (9.69 mg/100 mL) and ‘Libero’ (8.42 mg/100 mL). Other beet varieties contained less betacyanins: Sugar beet ‘Labonita’ 0.11 mg/100 mL; Swiss chard ‘Lucullus,’ 0.09 mg/100 mL; fodder beet ‘Monro’ 0.15 mg/100 mL. In contrast with weed beets and beetroots, these varieties have a ratio of betacyanins to betaxanthins under 1.0, but the betaxanthin content was higher in beetcrops than in wild beet and can be used as an alternative to non-red varieties. Stability tests of selected varieties showed that storage at 22 °C for 6 h, or at 7 °C for 24 h, did not significantly reduce the betalain content in the samples.


2020 ◽  
Vol 566-567 ◽  
pp. 141-151 ◽  
Author(s):  
V. Martínez-Pillado ◽  
I. Yusta ◽  
E. Iriarte ◽  
A. Álvaro ◽  
N. Ortega ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document