iterative optimization algorithm
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 26)

H-INDEX

6
(FIVE YEARS 1)

2022 ◽  
Vol 16 (4) ◽  
pp. 1-25
Author(s):  
Hanrui Wu ◽  
Michael K. Ng

Multi-source domain adaptation is a challenging topic in transfer learning, especially when the data of each domain are represented by different kinds of features, i.e., Multi-source Heterogeneous Domain Adaptation (MHDA). It is important to take advantage of the knowledge extracted from multiple sources as well as bridge the heterogeneous spaces for handling the MHDA paradigm. This article proposes a novel method named Multiple Graphs and Low-rank Embedding (MGLE), which models the local structure information of multiple domains using multiple graphs and learns the low-rank embedding of the target domain. Then, MGLE augments the learned embedding with the original target data. Specifically, we introduce the modules of both domain discrepancy and domain relevance into the multiple graphs and low-rank embedding learning procedure. Subsequently, we develop an iterative optimization algorithm to solve the resulting problem. We evaluate the effectiveness of the proposed method on several real-world datasets. Promising results show that the performance of MGLE is better than that of the baseline methods in terms of several metrics, such as AUC, MAE, accuracy, precision, F1 score, and MCC, demonstrating the effectiveness of the proposed method.


2021 ◽  
Vol 13 (21) ◽  
pp. 4222
Author(s):  
Wei Huang ◽  
San Jiang ◽  
Wanshou Jiang

Camera self-calibration determines the precision and robustness of AT (aerial triangulation) for UAV (unmanned aerial vehicle) images. The UAV images collected from long transmission line corridors are critical configurations, which may lead to the “bowl effect” with camera self-calibration. To solve such problems, traditional methods rely on more than three GCPs (ground control points), while this study designs a new self-calibration method with only one GCP. First, existing camera distortion models are grouped into two categories, i.e., physical and mathematical models, and their mathematical formulas are exploited in detail. Second, within an incremental SfM (Structure from Motion) framework, a camera self-calibration method is designed, which combines the strategies for initializing camera distortion parameters and fusing high-precision GNSS (Global Navigation Satellite System) observations. The former is achieved by using an iterative optimization algorithm that progressively optimizes camera parameters; the latter is implemented through inequality constrained BA (bundle adjustment). Finally, by using four UAV datasets collected from two sites with two data acquisition modes, the proposed algorithm is comprehensively analyzed and verified, and the experimental results demonstrate that the proposed method can dramatically alleviate the “bowl effect” of self-calibration for weakly structured long corridor UAV images, and the horizontal and vertical accuracy can reach 0.04 m and 0.05 m, respectively, when using one GCP. In addition, compared with open-source and commercial software, the proposed method achieves competitive or better performance.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Tao Zhou ◽  
Kui Xu ◽  
Chunguo Li ◽  
Zhexian Shen

Intelligent reflecting surfaces (IRSs) have significant advantages in enhancing the coverage and reducing the deployment cost of wireless networks. This paper studies an aerial IRS- (AIRS-) enhanced cell-free massive multiple-input multiple-output- (MIMO-) based wireless sensor network (WSN) in which multiple access points (APs) serve several sensor users (SUs). Direct links between the APs and SUs are blocked due to occlusion by tall buildings. Hence, we deploy an AIRS to improve the communication quality of the SUs. Our goal is to minimize the total transmit power of all APs under a given minimum signal-to-interference-plus-noise ratio (SINR) requirement. We propose a joint iterative optimization algorithm by designing an active beamforming mechanism at each AP and a passive beamforming mechanism at the AIRS to solve this problem. Simulation results illustrate the good performance of the proposed method.


2021 ◽  
Vol 11 (17) ◽  
pp. 7804
Author(s):  
Shengchao Jian ◽  
Xiangang Peng ◽  
Haoliang Yuan ◽  
Chun Sing Lai ◽  
Loi Lei Lai

Fault-cause identification plays a significant role in transmission line maintenance and fault disposal. With the increasing types of monitoring data, i.e., micrometeorology and geographic information, multiview learning can be used to realize the information fusion for better fault-cause identification. To reduce the redundant information of different types of monitoring data, in this paper, a hierarchical multiview feature selection (HMVFS) method is proposed to address the challenge of combining waveform and contextual fault features. To enhance the discriminant ability of the model, an ε-dragging technique is introduced to enlarge the boundary between different classes. To effectively select the useful feature subset, two regularization terms, namely l2,1-norm and Frobenius norm penalty, are adopted to conduct the hierarchical feature selection for multiview data. Subsequently, an iterative optimization algorithm is developed to solve our proposed method, and its convergence is theoretically proven. Waveform and contextual features are extracted from yield data and used to evaluate the proposed HMVFS. The experimental results demonstrate the effectiveness of the combined used of fault features and reveal the superior performance and application potential of HMVFS.


2021 ◽  
Vol 263 (6) ◽  
pp. 30-41
Author(s):  
Xiaoyan Teng ◽  
Zhihua Yan ◽  
Xudong Jiang ◽  
Qiang Li

In order to establish a method for topological optimization of the power flow response of a cylindrical shell stiffener structure based on BESO, this paper will combine the BESO topology optimization theoretical and the power flow response theory , and take the overall minimization of the power flow of the cylindrical shell stiffener structure as the optimization goal. Then an iterative optimization algorithm for the layout of the stiffener structure on the cylindrical shell surface can be established. The plate-beam coupling structure is used to simulate the cylindrical shell stiffener structure, a finite element model of the cylindrical shell stiffened is established and solved to obtain the power flow sensitivity of the finite element. This is used as an iterative criterion for the layout of the stiffener on the surface of the cylindrical shell structure optimize. Through the analysis of numerical examples, it is obtained that the optimization of the rib layout can better reduce the overall power flow response of the structure, which also verifies the feasibility of the optimization method.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Shuchen Zhou ◽  
Waqas Jadoon ◽  
Junaid Shuja

This paper presents an in-depth study and analysis of offloading strategies for lightweight user mobile edge computing tasks using a machine learning approach. Firstly, a scheme for multiuser frequency division multiplexing approach in mobile edge computing offloading is proposed, and a mixed-integer nonlinear optimization model for energy consumption minimization is developed. Then, based on the analysis of the concave-convex properties of this optimization model, this paper uses variable relaxation and nonconvex optimization theory to transform the problem into a convex optimization problem. Subsequently, two optimization algorithms are designed: for the relaxation optimization problem, an iterative optimization algorithm based on the Lagrange dual method is designed; based on the branch-and-bound integer programming method, the iterative optimization algorithm is used as the basic algorithm for each step of the operation, and a global optimization algorithm is designed for transmitting power allocation, computational offloading strategy, dynamic adjustment of local computing power, and receiving energy channel selection strategy. Finally, the simulation results verify that the scheduling strategy of the frequency division technique proposed in this paper has good energy consumption minimization performance in mobile edge computation offloading. Our model is highly efficient and has a high degree of accuracy. The anomaly detection method based on a decision tree combined with deep learning proposed in this paper, unlike traditional IoT attack detection methods, overcomes the drawbacks of rule-based security detection methods and enables them to adapt to both established and unknown hostile environments. Experimental results show that the attack detection system based on the model achieves good detection results in the detection of multiple attacks.


Author(s):  
Haoliang Yuan ◽  
Sio-Long Lo ◽  
Ming Yin ◽  
Yong Liang

In this paper, we propose a sparse tensor regression model for multi-view feature selection. Apart from the most of existing methods, our model adopts a tensor structure to represent multi-view data, which aims to explore their underlying high-order correlations. Based on this tensor structure, our model can effectively select the meaningful feature set for each view. We also develop an iterative optimization algorithm to solve our model, together with analysis about the convergence and computational complexity. Experimental results on several popular multi-view data sets confirm the effectiveness of our model.


Author(s):  
Michael J. Beck ◽  
Dennis L. Parker ◽  
J. Rock Hadley

Purpose. Although full-wave simulations could be used to aid in RF coil design, the algorithms may be too slow for an iterative optimization algorithm. If quasistatic simulations are accurate within the design tolerance, then their use could reduce simulation time by orders of magnitude compared to full-wave simulations. This paper examines the accuracy of quasistatic and full-wave simulations at 3 Tesla. Methods. Three sets of eight coils ranging from 3–10 cm (24 total) were used to measure SNR on three phantoms with conductivities of 0.3, 0.6, and 0.9 S/m. The phantom conductivities were chosen to represent those typically found in human tissues. The range of coil element sizes represents the sizes of coil elements seen in typical coil designs. SNR was determined using the magnetic and electric fields calculated by quasistatic and full-wave simulations. Each simulated SNR dataset was scaled to minimize the root mean squared error (RMSE) when compared against measured SNR data. In addition, the noise values calculated by each simulation were compared against benchtop measured noise values. Results. The RMSE was 0.285 and 0.087 for the quasistatic and full-wave simulations, respectively. The maximum and minimum quotient values, when taking the ratio of simulated to measured SNR values, were 1.69 and 0.20 for the quasistatic simulations and 1.29 and 0.75 for the full-wave simulations, respectively. The ratio ranges, for the calculated quasistatic and full-wave total noise values compared to benchtop measured noise values, were 0.83–1.06 and 0.27–3.02, respectively. Conclusions. Full-wave simulations were on average 3x more accurate than the quasistatic simulations. Full-wave simulations were more accurate in characterizing the wave effects within the sample, though they were not able to fully account for the skin effect when calculating coil noise.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2459
Author(s):  
Rubén Tena Sánchez ◽  
Fernando Rodríguez Varela ◽  
Lars J. Foged ◽  
Manuel Sierra Castañer

Phase reconstruction is in general a non-trivial problem when it comes to devices where the reference is not accessible. A non-convex iterative optimization algorithm is proposed in this paper in order to reconstruct the phase in reference-less spherical multiprobe measurement systems based on a rotating arch of probes. The algorithm is based on the reconstruction of the phases of self-transmitting devices in multiprobe systems by taking advantage of the on-axis top probe of the arch. One of the limitations of the top probe solution is that when rotating the measurement system arch, the relative phase between probes is lost. This paper proposes a solution to this problem by developing an optimization iterative algorithm that uses partial knowledge of relative phase between probes. The iterative algorithm is based on linear combinations of signals when the relative phase is known. Phase substitution and modal filtering are implemented in order to avoid local minima and make the algorithm converge. Several noise-free examples are presented and the results of the iterative algorithm analyzed. The number of linear combinations used is far below the square of the degrees of freedom of the non-linear problem, which is compensated by a proper initial guess. With respect to noisy measurements, the top probe method will introduce uncertainties for different azimuth and elevation positions of the arch. This is modelled by considering the real noise model of a low-cost receiver and the results demonstrate the good accuracy of the method. Numerical results on antenna measurements are also presented. Due to the numerical complexity of the algorithm, it is limited to electrically small- or medium-size problems.


Sign in / Sign up

Export Citation Format

Share Document